Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the solution to a problem of determining the heat flux density and the heat transfer coefficient, on the basis of temperature measurement at three locations in the flat sensor, with the assumption that the heat conductivity of the sensor material is temperature dependent. Three different methods for determining the heat flux and heat transfer coefficient, with their practical applications, are presented. The uncertainties in the determined values are also estimated.

Go to article

Authors and Affiliations

Dawid Taler
Sławomir Grądziel
Jan Taler
Download PDF Download RIS Download Bibtex

Abstract

Under steady-state conditions when fluid temperature is constant, temperature measurement can be accomplished with high degree of accuracy owing to the absence of damping and time lag. However, when fluid temperature varies rapidly, for example, during start-up, appreciable differences occur between the actual and measured fluid temperature. These differences occur because it takes time for heat to transfer through the heavy thermometer pocket to the thermocouple. In this paper, a method for determinig transient fluid temperature based on the first-order thermometer model is presented. Fluid temperature is determined using a thermometer, which is suddenly immersed into boiling water. Next, the time constant is defined as a function of fluid velocity for four sheated thermocouples with different diameters. To demonstrate the applicability of the presented method to actual data where air velocity varies, the temperature of air is estimated based on measurements carried out by three thermocouples with different outer diameters. Lastly, the time constant is presented as a function of fluid velocity and outer diameter of thermocouple.
Go to article

Authors and Affiliations

Magdalena Jaremkiewicz

This page uses 'cookies'. Learn more