Search results

Filters

  • Journals

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

For the die casting conditions of aluminium bronzes assumed based on the literature data, a thick-walled bush was cast, made of complex

aluminium bronze (Cu-Al-Fe-Ni-Cr). After the cast was removed from the mould, cracks were observed inside it. In order to identify the

stage in the technological production process at which, potentially, the formation of stresses damaging the continuity of the microstructure

created in the cast was possible (hot cracking and/or cold cracking), a computer simulation was performed. The article presents the results

of the computer simulation of the process of casting the material into the gravity die as well as solidifying and cooling of the cast in the

shape of a thick-walled bush. The simulation was performed with the use of the MAGMA5 program and by application of the

CuAl10Ni5,5Fe4,5 alloy from the MAGMA5 program database. The results were compared with the location of the defects identified in

the actual cast. As a result of the simulation of the die-casting process of this bush, potential regions were identified where significant

principal stresses accumulate, which can cause local hot and cold cracking. Until now, no research has been made of die-cast aluminium

bronzes with a Cr addition. Correlating the results of the computer simulation validated by the analysis of the actual cast made it possible

to clearly determine the critical regions in the cast exposed to cracking and point to the causes of its occurrence. Proposals of changes in

the bush die casting process were elaborated, in order to avoid hot tearing and cold cracking. The article discusses the results of

preliminary tests being a prologue to the optimization of the die-casting process parameters of complex aluminium bronze thick-walled

bushs.

Go to article

Authors and Affiliations

T. Pacyniak
B.P. Pisarek
D. Kołakowski

This page uses 'cookies'. Learn more