Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analogue circuit testing method that engages the analysis of the time response to a non-periodic stimulus specialized for the verification of selected specifications. The decision about the current circuit diagnostic state depends on an amplitude spectrum decomposition of the time response measured during the test. A shape of the test excitation spectrum is optimized with the use of a differential evolution algorithm and it allows for achieving maximum fault coverage and the optimal conditions for fault isolation. Genotypes of the evolutionary system encode the amplitude spectrum of candidates for testing stimuli by means of rectangle frequency windows with amplitudes determined evolutionarily.

Go to article

Authors and Affiliations

Tomasz Golonek
Piotr Jantos
Jerzy Rutkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a methodology for parametric fault clustering in analog electronic circuits with the use of a self-organizing artificial neural network. The method proposed here allows fast and efficient circuit diagnosis on the basis of time and/or frequency response which may lead to higher production yield. A self-organizing map (SOM) has been applied in order to cluster all circuit states into possible separate groups. So, it works as a feature selector and classifier. SOM can be fed by raw data (data comes from the time or frequency response) or some pre-processing is done at first. The author proposes conversion of a circuit response with the use of e.g. gradient and differentiation. The main goal of the SOM is to distribute all single faults on a two-dimensional map without state overlapping. The method is aimed for the development stage because the tolerances of elements are not taken into account, however single but parametric faults are considered. Efficiency analyses of fault clustering have been made on several examples e.g. a Sallen-Key BPF and an ECG amplifier. Testing procedure is performed in time and frequency domains for the Sallen-Key BPF with limited number of test points i.e. it is assumed that only input and output pins are available. A similar procedure has been applied to a real ECG amplifier in the frequency domain. Results prove a high efficiency in acceptable time which makes the method very convenient (easy and quick) as a first test in the development stage.

Go to article

Authors and Affiliations

Damian Grzechca

This page uses 'cookies'. Learn more