Search results

Filters

  • Journals

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, nonlinear free vibration analysis of micro-beams resting on the viscoelastic foundation is investigated by the use of the modified couple stress theory, which is able to capture the size effects for structures in micron and sub-micron scales. To this aim, the gov-erning equation of motion and the boundary conditions are derived using the Euler–Bernoulli beam and the Hamilton’s principle. The Galerkin method is employed to solve the governing nonlinear differential equation and obtain the frequency-amplitude algebraic equation. Final-ly, the effects of different parameters, such as the mode number, aspect ratio of length to height, the normalized length scale parameter and foundation parameters on the natural fre-quency-amplitude curves of doubly simply supported beams are studied.

Go to article

Bibliography

[1] W. Faris, E. Abdel-Rahman, and A. Nayfeh. Mechanical behavior of an electrostatically actuated micropump. In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, 22-25 April 2002. doi: 10.2514/6.2002-1303.
[2] X.M. Zhang, F.S. Chau, C. Quan, Y.L. Lam, and A.Q. Liu. A study of the static characteristics of a torsional micromirror. Sensors and Actuators A: Physical, 90(1):73–81, 2001. doi: 10.1016/S0924-4247(01)00453-8.
[3] X. Zhao, E. M. Abdel-Rahman, and A.H. Nayfeh. A reduced-order model for electrically actuated microplates. Journal of Micromechanics and Microengineering, 14(7):900–906, 2004. doi: 10.1088/0960-1317/14/7/009.
[4] H.A.C. Tilmans and R. Legtenberg. Electrostatically driven vacuum-encapsulated polysilicon resonators: Part II. Theory and performance. Sensors and Actuators A: Physical, 45(1):67–84, 1994. doi: 10.1016/0924-4247(94)00813-2.
[5] N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42(2):475–487, 1994. doi: 10.1016/0956-7151(94)90502-9.
[6] J.S. Stölken and A.G. Evans. A microbend test method for measuring the plasticity length scale. Acta Materialia, 46(14):5109–5115, 1998. doi: 10.1016/S1359-6454(98)00153-0.
[7] A.C.l. Eringen. Nonlocal polar elastic continua. International Journal of Engineering Science, 10(1):1–16, 1972. doi: 10.1016/0020-7225(72)90070-5.
[8] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, and P. Tong. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(8):1477–1508, 2003. doi: 10.1016/S0022-5096(03)00053-X.
[9] R.A. Toupin. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 11(1):385–414, 1962. doi: 10.1007/BF00253945.
[10] F. Yang, A.C.M. Chong, D.C.C. Lam, and P. Tong. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10):2731–2743, 2002. doi: 10.1016/S0020-7683(02)00152-X.
[11] J.N. Reddy. Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. International Journal of Engineering Science, 48(11):1507–1518, 2010. doi: 10.1016/j.ijengsci.2010.09.020.
[12] J.N. Reddy. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 45(2-8):288–307, 2007. doi: 10.1016/j.ijengsci.2007.04.004.
[13] E. Taati, M. Molaei, and J.N. Reddy. Size-dependent generalized thermoelasticity model for Timoshenko micro-beams based on strain gradient and non-Fourier heat conduction theories. Composite Structures, 116:595–611, 2014. doi: 10.1016/j.compstruct.2014.05.040.
[14] H.M. Sedighi, A. Koochi, and M. Abadyan. Modeling the size dependent static and dynamic pull-in instability of cantilever nanoactuator based on strain gradient theory. International Journal of Applied Mechanics, 06(05):1450055, 2014. doi: 10.1142/S1758825114500550.
[15] M. Molaei, M.T. Ahmadian, and E. Taati. Effect of thermal wave propagation on thermoelastic behavior of functionally graded materials in a slab symmetrically surface heated using analytical modeling. Composites Part B: Engineering, 60:413–422, 2014. doi: 10.1016/j.compositesb.2013.12.070.
[16] M. Molaei Najafabadi, E. Taati, and H. Basirat Tabrizi. Optimization of functionally graded materials in the slab symmetrically surface heated using transient analytical solution. Journal of Thermal Stresses, 37(2):137–159, 2014. doi: 10.1080/01495739.2013.839617.
[17] L.L. Ke and Y.S. Wang. Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Composite Structures, 93(2):342–350, 2011. doi: 10.1016/j.compstruct.2010.09.008.
[18] L.L. Ke, Y.S. Wang, J. Yang, and S. Kitipornchai. Nonlinear free vibration of size-dependent functionally graded microbeams. International Journal of Engineering Science, 50(1):256–267, 2012. doi: 10.1016/j.ijengsci.2010.12.008.
[19] S.K. Park and X.L. Gao. Bernoulli–Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, 16(11):2355, 2006. http://stacks.iop.org/0960-1317/16/i=11/a=015.
[20] S. Kong, S. Zhou, Z. Nie, and K. Wang. The size-dependent natural frequency of Bernoulli–Euler micro-beams. International Journal of Engineering Science, 46(5):427–437, 2008. doi: 10.1016/j.ijengsci.2007.10.002.
[21] E. Taati, M. Nikfar, and M.T. Ahmadian. Formulation for static behavior of the viscoelastic Euler-Bernoulli micro-beam based on the modified couple stress theory. In ASME 2012 International Mechanical Engineering Congress and Exposition; Vol. 9: Micro- and Nano-Systems Engineering and Packaging, Parts A and B, pages 129–135, Houston, Texas, USA, 9-15 November 2012. doi: 10.1115/IMECE2012-86591.
[22] H.M. Ma, X.L. Gao, and J.N. Reddy. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. Journal of the Mechanics and Physics of Solids, 56(12):3379–3391, 2008. doi: 10.1016/j.jmps.2008.09.007.
[23] M. Asghari and E. Taati. A size-dependent model for functionally graded micro-plates for mechanical analyses. Journal of Vibration and Control, 19(11):1614–1632, 2013. doi: 10.1177/1077546312442563.
[24] J.N. Reddy and J. Kim. A nonlinear modified couple stress-based third-order theory of functionally graded plates. Composite Structures, 94(3):1128–1143, 2012. doi: 10.1016/j.compstruct.2011.10.006.
[25] E. Taati, M. Molaei Najafabadi, and H. Basirat Tabrizi. Size-dependent generalized thermoelasticity model for Timoshenko microbeams. Acta Mechanica, 225(7):1823–1842, 2014. doi: 10.1007/s00707-013-1027-7.
[26] H.T. Thai and D.H. Choi. Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Composite Structures, 95:142–153, 2013. doi: 10.1016/j.compstruct.2012.08.023.
[27] E. Taati. Analytical solutions for the size dependent buckling and postbuckling behavior of functionally graded micro-plates. International Journal of Engineering Science, 100:45–60, 2016. doi: 10.1016/j.ijengsci.2015.11.007.
[28] M.A. Eltaher, A.E. Alshorbagy, and F.F. Mahmoud. Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Applied Mathematical Modelling, 37(7):4787–4797, 2013. doi: 10.1016/j.apm.2012.10.016.
[29] B. Akgöz and Ö. Civalek. Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity. Composite Structures, 134:294–301, 2015. doi: 10.1016/j.compstruct.2015.08.095.
[30] N. Togun and S.M. Bağdatlı. Nonlinear vibration of a nanobeam on a Pasternak elastic foundation based on non-local Euler-Bernoulli beam theory. Mathematical and Computational Applications, 21(1):3, 2016.
[31] B. Akgöz and Ö. Civalek. A novel microstructure-dependent shear deformable beam model. International Journal of Mechanical Sciences, 99:10–20, 2015. doi: 10.1016/j.ijmecsci.2015.05.003.
[32] B. Akgöz and Ö. Civalek. A new trigonometric beam model for buckling of strain gradient microbeams. International Journal of Mechanical Sciences, 81:88–94, 2014. doi: 10.1016/j.ijmecsci.2014.02.013.
[33] N. Shafiei, M. Kazemi, and M. Ghadiri. Nonlinear vibration of axially functionally graded tapered microbeams. International Journal of Engineering Science, 102:12–26, 2016. doi: 10.1016/j.ijengsci.2016.02.007.
[34] R. Ansari, V. Mohammadi, M.F. Shojaei, R. Gholami, and H. Rouhi. Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. European Journal of Mechanics – A/Solids, 45:143–152, 2014. doi: 10.1016/j.euromechsol.2013.11.002.
[35] Yong-Gang Wang, Wen-Hui Lin, and Ning Liu. Nonlinear free vibration of a microscale beam based on modified couple stress theory. Physica E: Low-dimensional Systems and Nanostructures, 47:80–85, 2013. doi: 10.1016/j.physe.2012.10.020.
Go to article

Authors and Affiliations

Jafar Eskandari Jam
1
Milad Noorabadi
1
Nader Namdaran
1

  1. Composite Materials and Technology Cente, Malek Ashtar University of Technology, Tehran, Iran

This page uses 'cookies'. Learn more