Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a one-dimensional mathematical model for simulating the transient processes which occur in the liquid flat-plate solar collector tubes. The proposed method considers the model of collector tube as one with distributed parameters. In the suggested method one tube of the collector is taken into consideration. In this model the boundary conditions can be time-dependent. The proposed model is based on solving the equation describing the energy conservation on the fluid side. The temperature of the collector tube wall is determined from the equation of transient heat conduction. The derived differential equations are solved using the implicit finite difference method of iterative character. All thermo-physical properties of the operating fluid and the material of the tube wall can be computed in real time. The time-spatial heat transfer coefficient at the working fluid side can be also computed on-line. The proposed model is suitable for collectors working in a parallel or serpentine tube arrangement. As an illustration of accuracy and effectiveness of the suggested method the computational verification was carried out. It consists in comparing the results found using the presented method with results of available analytic solutions for transient operating conditions. Two numerical analyses were performed: for the tube with temperature step function of the fluid at the inlet and for the tube with heat flux step function on the outer surface. In both cases the conformity of results was very good. It should be noted, that in real conditions such rapid changes of the fluid temperature and the heat flux of solar radiation, as it was assumed in the presented computational verification, do not occur. The paper presents the first part of the study, which aim is to develop a mathematical model for simulating the transient processes which occur in liquid flat-plate solar collectors. The experimental verification of the method is a second part of the study and is not presented in this paper. In order to perform this verification, the mathematical model would be completed with additional energy conservation equations. The experimental verification will be carry out in the close future.

Go to article

Authors and Affiliations

Wiesław Zima
Piotr Dziewa
Download PDF Download RIS Download Bibtex

Abstract

In this paper a mathematical model enabling the analysis of the heat-flow phenomena occurring in the waterwalls of the combustion chambers of the boilers for supercritical parameters is proposed. It is a one-dimensional model with distributed parameters based on the solution of equations describing the conservation laws of mass, momentum, and energy. The purpose of the numerical calculations is to determine the distributions of the fluid enthalpy and the temperature of the waterwall pipes. This temperature should not exceed the calculation temperature for particular category of steel. The derived differential equations are solved using two methods: with the use of the implicit difference scheme, in which the mesh with regular nodes was applied, and using the Runge-Kutta method. The temperature distribution of the waterwall pipes is determined using the CFD. All thermophysical properties of the fluid and waterwall pipes are computed in real-time. The time-spatial heat transfer coefficient distribution is also computed in the on-line mode. The heat calculations for the combustion chamber are carried out with the use of the zone method, thus the thermal load distribution of the waterwalls is known. The time needed for the computations is of great importance when taking into consideration calculations carried out in the on-line mode. A correctly solved one-dimensional model ensures the appropriately short computational time.

Go to article

Authors and Affiliations

Wiesław Zima
Sławomir Grądziel
Artur Cebula

This page uses 'cookies'. Learn more