Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The scope of work included the launch of the process of refining slag suspension in a gas oven using a variety of technological additives.

After the refining process (in the context of copper recovery), an assessment of the effect of selected reagents at the level of the slag

refining suspension (in terms of copper recovery). Method sieve separated from the slag waste fraction of metallic, iron - silicate and

powdery waste. Comparison of these photographs macroscopic allowed us to evaluate the most advantageous method of separating

metallic fraction from the slag. After applying the sample A (with KF2 + NaCl) we note that in some parts of the slag are still large

amounts of metallic fraction. The fraction of slag in a large majority of the elements has the same size of 1 mm, and a larger portion of the

slag, the size of which is from 2 to 6 mm. Definitely the best way is to remove the copper by means of the component B (with NaCl ) and

D (with KF2

). However, as a result of removing the copper by means of component C (with CaO) were also obtained a relatively large

number of tiny droplets of copper, which was problematic during segregation. In both cases we were able to separate the two fractions in a

fast and simple manner.

Go to article

Authors and Affiliations

P. Migas
S. Biernat
P. Kwapisiński
W. Wołczyński
A.W. Bydałek
A. Bydałek
K. Jasińska
Download PDF Download RIS Download Bibtex

Abstract

The suspension of the copper droplets in the post-processing slag taken directly from the KGHM-Polska Miedź S.A. Factory (from the

direct-to-blister technology as performed in the flash furnace) was subjected to the special treatment with the use of the one of the typical

industrial reagent and with the complex reagent newly patented by the authors. This treatment was performed in the BOLMET S.A.

Company in the semi-industrial conditions. The result of the CaCO3, and Na2CO3 chemicals influence on the coagulation and subsequent

sedimentation of copper droplets on the crucible bottom were subjected to comparison with the sedimentation forced by the mentioned

complex reagent. The industrial chemicals promoted the agglomeration of copper droplets but the coagulation was arrested / blocked by

the formation of the lead envelope. Therefore, buoyancy force forced the motion of the partially coagulated copper droplets towards the

liquid slag surface rather than sedimentation on the crucible bottom. On the other hand, the complex reagent was able to influence the

mechanical equilibrium between copper droplets and some particles of the liquid slag as well as improve the slag viscosity. Finally, the

copper droplets coagulated successfully and generally, were subjected to a settlement on the crucible bottom as desired / requested.

Go to article

Authors and Affiliations

W. Wołczyński
A.W. Bydałek
K. Najman
J. Karwan-Baczewska

This page uses 'cookies'. Learn more