Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Foam fractionation process for concentration of laccases from two Basidiomycete strains under different process conditions was investigated. Culture supernatants of Cerrena unicolor and Pleurotus sapidus containing active laccase were used with and without surfactant additives. Two surfactants: cationic cetrimonium bromide (CTAB) and non-ionic Polysorbate 80 were applied in the range from 0.2 mM to 1.5 mM. The pH levels ranging from 3 to 10 were examined with particular attention to pH=4, which is close to the pI of the enzymes. Results show that the source of the enzyme is significant in terms of partitioning efficiency in a foam fractionation process. Laccase from Cerrena unicolor showed the best activity partitioning coefficients between foamate and retentate of almost 200 with yields reaching 50% for pH 7.5 and concentration of CTAB cCTAB = 0.5 mM, whereas laccase from Pleurotus sapidus showed partitioning coefficients of up to 8 with 25% yield for pH 4 and cCTAB = 0.5 mM.

Go to article

Authors and Affiliations

Michał Blatkiewicz
Stanisław Ledakowicz
Anna Antecka
Andrzej Górak
Download PDF Download RIS Download Bibtex

Abstract

Culture supernatant containing laccase produced by Cerrena unicolor strain was used to examine laccase partitioning between phases in an aqueous two-phase system. The investigated system consisted of polyethylene glycol 3000 and sodium phosphate buffer adjusted to pH = 7. Influence of several parameters on partitioning was measured, including phase forming components’ concentrations, tie line lengths, phase volume ratio, supernatant dilution, process temperature and halogen salt supplementation. Partitioning coefficients up to 78 in the bottom phase were achieved with yields of over 90%. Tie line length and phase volume ratio had significant effect on enzyme partitioning.

Go to article

Authors and Affiliations

Michał Blatkiewicz
Stanisław Ledakowicz
Axel Prinz
Andrzej Górak

This page uses 'cookies'. Learn more