Search results

Filters

  • Journals

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a methodology for the calculation of the flux distribution in power transformer cores considering nonlinear material, with reduced computational effort. The calculation is based on a weak coupled multi-harmonic approach. The methodology can be applied to 2D and 3D Finite Element models. The decrease of the computational effort for the proposed approach is >90% compared to a time-stepping method at comparable accuracy. Furthermore, the approach offers a possibility for parallelisation to reduce the overall simulation time. The speed up of the parallelised simulations is nearly linear. The methodology is applied to a single-phase and a three-phase power transformer. Exemplary, the flux distribution for a capacitive load case is determined and the differences in the flux distribution obtained by a 2D and 3D FE model are pointed out. Deviations are significant, due to the fact, that the 2D FE model underestimates the stray fluxes. It is shown, that a 3D FE model of the transformer is required, if the nonlinearity of the core material has to be taken into account.

Go to article

Authors and Affiliations

Björn Riemer
Kay Hameyer

This page uses 'cookies'. Learn more