Search results

Filters

  • Journals

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A numerical model of binary alloy crystallization, based on the cellular automaton technique, is presented. The model allows to follow the

crystallization front movement and to generate the images of evolution of the dendritic structures during the solidification of a binary

alloy. The mathematic description of the model takes into account the proceeding thermal, diffusive, and surface phenomena. There are

presented the results of numerical simulations concerning the multi-dendritic growth of solid phase along with the accompanying changes

in the alloying element concentration field during the solidification of Al + 5% wt. Mg alloy. The model structure of the solidified casting

was achieved and compared with the actual structure of a die casting. The dendrite interaction was studied with respect to its influence on

the generation and growth of the primary and secondary dendrite arms and on the evolution of solute segregation both in the liquid and in

the solid state during the crystallization of the examined alloy. The morphology of a single, free-growing dendritic crystal was also

modelled. The performed investigations and analyses allowed to state e.g. that the developed numerical model correctly describes the

actual evolution of the dendritic structure under the non-equilibrium conditions and provides for obtaining the qualitatively correct results

of simulation of the crystallization process.

Go to article

Authors and Affiliations

A. Zyska
Z. Konopka
M. Łągiewka
M. Nadolski

This page uses 'cookies'. Learn more