Search results

Filters

  • Journals
  • Date

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

LED light must be cooled to avoid reaching a certain temperature. Two different 3D practical domains of LED light are modelled, (i) square aluminium plate with a cylindrical plate and an LED module (model I), (ii) the same provision of model I with 25 fins (model II). ANSYS 16.0 is used for solving the problem. Temperature distribution, junction temperature (Tj) and heat flux are estimated. Analyses are carried out for various ambient temperatures (Ta) and for different LED power dissipations (Q) to identify the safe operating conditions. In model I, it is found that 38% of working conditions go beyond the critical limit of Tj and it is reduced to 21.4% in model II. In model II, for low Ta of 30 and 40ºC with all Q considered in this analysis are safer. If Ta is between 30 and 80ºC, then Q must be maintained at 0.5 to 1.25 W. Beyond this, conditions are not safe.

Go to article

Bibliography

[1] B.P. Minaker and Z. Yao. Design and analysis of an interconnected suspension for a small off-road vehicle. Archive of Mechanical Engineering, 64(1):5–21, 2017. doi: 10.1515/meceng-2017-0001.
[2] X-J. Zhao, Y-X. Cai, J. Wang, X-H. Li, and C. Zhang. Thermal model design and analysis of the high-power LED automotive headlight cooling device. Applied Thermal Engineering, 75:248–258, 2015. doi: 10.1016/j.applthermaleng.2014.09.066.
[3] D. Jang, S.J. Park, S.J. Yook, and K.S. Lee. The orientation effect for cylindrical heat sinks with applications to LED light bulbs. International Journal of Heat and Mass Transfer, 71:496–502, 2014. doi: 10.1016/j.ijheatmasstransfer.2013.12.037.
[4] N. Wang, J. Liu, Q. Zhang, H. Yang, and M. Tan. Fatigue life evaluation and failure analysis of light beam direction adjusting mechanism of an automobile headlight exposed to random loading. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(2):224-231, 2017. doi: 10.1177/0954407017740445.
[5] L. Sun, J. Zhu, and H. Wong. Simulation and evaluation of the peak temperature in LED light bulb heat sink. Microelectronics Reliability, 61:140–144, 2016. doi: 10.1016/j.microrel.2015.12.023.
[6] D. Luo, P. Ge, D. Liu, and and H. Wang. A combined lens design for an LED lowbeam motorcycle headlight. Lighting Research & Technology, 50(3):456–466, 2017. doi: 10.1177/1477153517697370.
[7] L. Kim, J.H. Choi, S.H. Jang, and M.W. Shin. Thermal analysis of LED array system with heat pipe. Thermochimica Acta, 455(1-2):21–25, 2007. doi: 10.1016/j.tca.2006.11.031.
[8] X.-Y. Lu, T.-C. Hua, and Y.-P. Wang. Thermal analysis of high power LED package with heat pipe heat sink. Microelectronics Journal, 42(11):1257–1262, 2011. doi: 10.1016/j.mejo.2011.08.009.
[9] C.-S. Kim, J.-G. Lee, J.-H. Cho, D.-Y. Kim, and T.-B.Seo. Experimental study of humidity control methods in a light-emitting diode (LED) lighting device. Journal of Mechanical Science and Technology, 29(6):2501–2508, 2015. doi: 10.1007/s12206-015-0546-7.
[10] X.-Y. Lu, T.-C. Hua, M.-J. Liu, and Y.-X. Cheng. Thermal analysis of loop heat pipe used for high-power LED. Thermochimica Acta, 493(1-2):25–29, 2009. doi: 10.1016/j.tca.2009.03.016.
[11] M. Janicki, T. Torzewicz, A. Samson, T. Raszkowski, A.Napieralski. Experimental identification of LED compact thermal model element values. Microelectronics Reliability, 86:20–26, 2018. doi: 10.1016/j.microrel.2018.05.003.
[12] K.C. Yung, H. Liem, and H.S. Choy. Heat transfer analysis of a high-brightness LED array on PCB under different placement configurations. International Communications in Heat and Mass Transfer, 53:79–86, 2014. doi: 10.1016/j.icheatmasstransfer.2014.02.014.
[13] M.W. Shin, and S.H. Jang. Thermal analysis of high power LED packages under the alternating current operation. Solid-State Electronics, 68:48–50, 2012. doi: 10.1016/j.sse.2011.10.033.
[14] J. Zhou, J. Huang, Y. Wang, and Z. Zhou. Thermal distribution of multiple LED module. Applied Thermal Engineering, 93:122–130, 2016. doi: 10.1016/j.applthermaleng.2015.09.022.
[15] K.-S. Yang, C.-H. Chung, C.-W. Tu, C.-C. Wong, T.-Y. Yang, and M.-T. Lee. Thermal spreading resistance characteristics of a high power light emitting diode module. Applied Thermal Engineering, 70(1):361–368, 2014. doi: 10.1016/j.applthermaleng.2014.05.028.
[16] K.-Y. Liao and S.H. Tseng. A superior design for high power GaN-based light-emitting diode packages. Solid-State Electronics, 104:96–100, 2015. doi: 10.1016/j.sse.2014.11.008.
[17] K.F. Sokmen, E. Pulat, N. Yamankaradeniz, and S. Coskun. Thermal computations of temperature distribution and bulb heat transfer in an automobile headlamp. Heat and Mass Transfer, 50(2):199–210, 2014. doi: 10.1007/s00231-013-1229-5.
[18] I. Kim, S. Cho, D. Jung, C.R. Lee, D. Kim, and B.J. Baek. Thermal analysis of high power LEDs on the MCPCB. Journal of Mechanical Science and Technology, 27(5):1493–1499, 2013. doi: 10.1007/s12206-013-0329-y.
[19] V.P. Chandramohan and P. Talukdar. Three dimensional numerical modeling of simultaneous heat and moisture transfer in a moist object subjected to convective drying. International Journal of Heat Mass Transfer, 53(21-22):4638–4650, 2010. doi: 10.1016/j.ijheatmasstransfer.2010.06.029.
[20] S. Yadav, A.B. Lingayat, V.P. Chandramohan, and V.R.K. Raju. Numerical analysis on thermal energy storage device to improve the drying time of indirect type solar dryer. Heat and Mass Transfer, 54(12):3631–3646, 2018. doi: 10.1007/s00231-018-2390-7.
[21] G. Arunsandeep and V.P. Chandramohan. Numerical solution for temperature and moisture distribution of rectangular, cylindrical and spherical objects during drying. Journal of Engineering Physics and Thermophysics, 91(4):895–906, 2018. doi: 10.1007/s10891-018-1814-z.
[22] T.A. Alves, P.H.D. Santos, and M.A. Barbur. An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow. Frontiers of Mechanical Engineering, 10(3):263–276, 2015. doi: 10.1007/s11465-015-0345-y.
[23] T.L. Bergman, F.P. Incropera, D.P. Dewitt, and A.S. Lavine. Fundamentals of Heat and Mass Transfer. 7th edition. John Wiley & Sons, 2011.
Go to article

Authors and Affiliations

Manbodh Kumar Mishra
1
V.P. Chandramohan
1
Karthik Balasubramanian
1

  1. Department of Mechanical Engineering, National Institute of Technology Warangal, Telangana, India.

This page uses 'cookies'. Learn more