Search results

Filters

  • Journals

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The pressure of wet water vapor inside a condenser has a great impact on the efficiency of thermal cycle. The value of this pressure depends on the mass share of inert gases (air). The knowledge of the spots where the air accumulates allows its effective extraction from the condenser, thus improving the conditions of condensation. The condensation of water vapor with the share of inert gas in a model tube bank of a condenser has been analyzed in this paper. The models include a static pressure loss of the water vapor/air mixture and the resultant changes in the water vapor parameters. The mass share of air in water vapor was calculated using the Dalton’s law. The model includes changes of flow and thermodynamic parameters based on the partial pressure of water vapor utilizing programmed water vapor tables. In the description of the conditions of condensation the Nusselts theory was applied. The model allows for a deterioration of the heat flow conditions resulting from the presence of air. The paper contains calculations of the water vapor flow with the initial mass share of air in the range 0.2 to 1%. The results of calculations clearly show a great impact of the share of air on the flow conditions and the deterioration of the conditions of condensation. The data obtained through the model for a given air/water vapor mixture velocity upstream of the tube bank allow for identification of the spots where the air accumulates.

Go to article

Authors and Affiliations

Magda Joachimiak
Damian Joachimiak
Piotr Krzyślak
Download PDF Download RIS Download Bibtex

Abstract

The increase of ship’s energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

Go to article

Authors and Affiliations

Zheshu Ma
Hua Chen
Yong Zhang
Download PDF Download RIS Download Bibtex

Abstract

This paper presents mathematical modelling and numerical analysis to evaluate entropy generation analysis (EGA) by considering pressure drop and second law efficiency based on thermodynamics for forced convection heat transfer in rectangular duct of a solar air heater with wire as artificial roughness in the form of arc shape geometry on the absorber plate. The investigation includes evaluations of entropy generation, entropy generation number, Bejan number and irreversibilities of roughened as well as smooth absorber plate solar air heaters to compare the relative performances. Furthermore, effects of various roughness parameters and operating parameters on entropy generation have also been investigated. Entropy generation and irreversibilities (exergy destroyed) has its minimum value at relative roughness height of 0.0422 and relative angle of attack of 0.33, which leads to the maximum exergetic efficiency. Entropy generation and exergy based analyses can be adopted for the evaluation of the overall performance of solar air heaters.

Go to article

Authors and Affiliations

Radha K. Prasad
Mukesh K. Sahu
Download PDF Download RIS Download Bibtex

Abstract

In this study, the influences of different parameters at performance two-phase closed thermosiphon (TPCT) was presented. It has been confirmed that the working fluid, as well as operating parameters and fill ratio, are very important factors in the performance of TPCT. The article shows characteristics of gravitational tube geometries, as well as the technical characteristic of the most important system components, i.e., the evaporator/condenser. The experiment’s plan and the results of it for the two-phase thermosiphon for both evaluated geometries with varying thermal and fluid flow parameters are presented. Experiments were performed for the most perspective working fluids, namely: water, R134a, SES36, ethanol and HFE7100. Obtained research proves the possibility to use TPCT for heat recovery from the industrial waste water.

Go to article

Authors and Affiliations

Rafał Andrzejczyk
Tomasz Muszyński
Download PDF Download RIS Download Bibtex

Abstract

Analysis of the state of-the-art in research of minichannel heat exchangers, especially on the topic of flow maldistribution in multiple channels, has been accomplished. Studies on minichannel plate heat exchanger with 51 parallel minichannels with four hydraulic diameters, i.e., 461 μm, 574 μm, 667 μm, and 750 μm have been presented. Flow at the instance of filling the microchannel with water at low flow rates has been visualized. The pressure drop characteristics for single minichannel plate have been presented along with the channels blockage, which occurred in several cases. The impact of the mass flow rate and channels’ cross-section dimensions on the flow maldistribution were illustrated.

Go to article

Authors and Affiliations

Paweł Dąbrowski
Dariusz Mikielewicz
Michał Klugmann
Download PDF Download RIS Download Bibtex

Abstract

The article presents detailed two-phase adiabatic pressure drops data for refrigerant R134a. Study cases have been set for a mass flux varying from 200 to 400 kg/m2s, at the saturation temperature of 19.4°C. Obtained experimental data was compared with the available correlations from the literature for the frictional pressure drop during adiabatic flow. Influence of mixture preparation on pressure drop was investigated, for varying inlet subcooling temperature in the heated section. The flow patterns have also been obtained by means of a high-speed camera placed in the visualization section and compared with literature observations.

Go to article

Authors and Affiliations

Tomasz Muszyński
Rafał Andrzejczyk
Carlos A. Dorao
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to study the thermoviscoelastic interactions in a homogeneous, isotropic semi-infinite solid under two-temperature theory with heat source. The Kelvin-Voigt model of linear viscoelasticity which describes the viscoelastic nature of the material is used. The bounding plane surface of the medium is subjected to a non-Gaussian laser pulse. The generalized thermoelasticity theory with dual phase lags model is used to solve this problem. Laplace transform technique is used to obtain the general solution for a suitable set of boundary conditions. Some comparisons have been shown in figures to estimate the effects of the phase lags, viscosity, temperature discrepancy, laser-pulse and the laser intensity parameters on all the studied fields. A comparison was also made with the results obtained in the case of one temperature thermoelasticity theory.

Go to article

Authors and Affiliations

Mohamed I.A. Othman
Ahmed E.E. Abouelregal
Download PDF Download RIS Download Bibtex

Abstract

In this paper, 3 typical organic fluids were selected as working fluids for a sample slag washing water binary power plants. In this system, the working fluids obtain the thermal energy from slag washing water sources. Thus, it plays a significant role on the cycle performance to select the suitable working fluid. Energy and exergy efficiencies of 3 typical organic fluids were calculated. Dry type fluids (i.e., R227ea) showed higher energy and exergy efficiencies. Conversely, wet fluids (i.e., R143a and R290) indicated lower energy and exergy efficiencies, respectively.

Słowa kluczowe

Go to article

Authors and Affiliations

Zi-Ao Li
Yanna Liu
Peng Dong
Yingjie Zhang
Song Xiao

This page uses 'cookies'. Learn more