Search results

Filters

  • Journals
  • Date

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This work depicts the effects of deep cryogenically treated high-speed steel on machining. In recent research, cryogenic treatment has been acknowledged for improving the life or performance of tool materials. Hence, tool materials such as the molybdenum-based high-speed tool steel are frequently used in the industry at present. Therefore, it is necessary to observe the tool performance in machining; the present research used medium carbon steel (AISI 1045) under dry turning based on the L9 orthogonal array. The effect of untreated and deep cryogenically treated tools on the turning of medium carbon steel is analyzed using the multi-input-multi-output fuzzy inference system with the Taguchi approach. The cutting speed, feed rate and depth of cut were the selected process parameters with an effect on surface roughness and the cutting tool edge temperature was also observed. The results reveal that surface roughness decreases and cutting tool edge temperature increases on increasing the cutting speed. This is followed by the feed rate and depth of cut. The deep cryogenically treated tool caused a reduction in surface roughness of about 11% while the cutting tool edge temperature reduction was about 23.76% higher than for an untreated tool. It was thus proved that the deep cryogenically treated tool achieved better performance on selected levels of the turning parameters.

Go to article

Authors and Affiliations

P. Raja
R. Malayalamurthim
M. Sakthivel

This page uses 'cookies'. Learn more