Search results

Filters

  • Journals

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is the comparison of the least squares prediction presented by Heiskanen and Moritz (1967) in the classical handbook “Physical Geodesy” with the geostatistical method of simple kriging as well as in case of Gaussian random fields their equivalence to conditional expectation. The paper contains also short notes on the extension of simple kriging to ordinary kriging by dropping the assumption of known mean value of a random field as well as some necessary information on random fields, covariance function and semivariogram function. The semivariogram is emphasized in the paper, for two reasons. Firstly, the semivariogram describes broader class of phenomena, and for the second order stationary processes it is equivalent to the covariance function. Secondly, the analysis of different kinds of phenomena in terms of covariance is more common. Thus, it is worth introducing another function describing spatial continuity and variability. For the ease of presentation all the considerations were limited to the Euclidean space (thus, for limited areas) although with some extra effort they can be extended to manifolds like sphere, ellipsoid, etc.
Go to article

Authors and Affiliations

Marcin Ligas
Marek Kulczycki
Download PDF Download RIS Download Bibtex

Abstract

In monitoring vertical displacements in elongated structures (e.g. bridges, dams) by means of precise geometric levelling a reference base usually consists of two subgroups located on both ends of a monitored structure. The bigger the separation of the subgroups, the greater is the magnitude of undetectable displacement of one subgroup with respect to the other. With a focus on a method of observation differences the question arises which of the two basic types of computation datum, i.e. the elastic and the fixed, both applicable in this method, is more suitable in such a specific base configuration. To support the analysis of this problem, general relationships between displacements computed in elastic datum and in fixed datum are provided. They are followed by auxiliary relationships derived on the basis of transformation formulae for different computational bases in elastic datum. Furthermore, indices of base separation are proposed which can be helpful in the design of monitoring networks. A test network with simulated mutual displacements of the base subgroups, is used to investigate behaviour of the network with the fixed and the elastic datum being applied. Also, practical guidelines are given concerning data processing procedures for such specific monitoring networks. For big separation of base subgroups a non-routine procedure is recommended, aimed at facilitating specialist interpretation of monitoring results.
Go to article

Authors and Affiliations

Witold Prószyński
Download PDF Download RIS Download Bibtex

Abstract

In the paper a frequency method of filtering airborne laser data is presented. A number of algorithms developed to remove objects above a terrain (buildings, vegetation etc.) in order to obtain the terrain surface were presented in literature. Those all methods published are based on geometrical criteria, i.e. on a specific threshold of elevation differences between two neighbouring points or groups of points. In other words, topographical surface is described in a spatial domain. The proposed algorithm operates on topographical surface described in a frequency domain. Two major tools, i.e. Fast Fourier Transform (FFT) and digital filters are used. The principal assumption is based on the idea that low frequencies are responsible for a terrain surface, while high frequencies are connected to objects above the terrain. The general guidelines of this method were for the first time presented at (Marmol and Jachimski, 2004). Due to the fact that the preliminary results showed some limitations, two-stage filtering algorithm has been introduced. The frequency filter was modified in such a manner that different filter parameters are used to detect buildings than those to recognize vegetation. In the first stage of data processing the filtering concerning elimination of points connected with urban areas was applied. The low-pass filter with parameters determined for urban area was used for the whole tested terrain in that stage. The purpose of the second stage was to eliminate vegetation by using the filter for forest areas. The presented method was tested by using data sets obtained in the ISPRS test on extracting DTM from point clouds. The results of using the two-stage algorithm were com- pared with both reference data and with filtering results of eight method reported to ISPRS test. A numerical comparison of the filter output with a reference data set shows that the filter generates DTM of a satisfactory quality. The accuracy of DTM produced by the frequency algorithm fits the average accuracy of eight methods reported in the ISPRS test.
Go to article

Authors and Affiliations

Urszula Marmol
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the least admissible dimensions of black lines of spatial object images, according to Saliszczew, adjusted to the needs of database generalization. It is pointed out, that the adjusted dimensions are in agreement with the cartographic norm included in the National Map Accuracy Standards , and their application to the generalization 1 will allow, for any map scale, the determination of the: • value of the scale-dependent parameter of the generalization process, without user action; • measure of recognizability of the shortest black line section on the map, what helps to obtain unique results of line generalization; • measure of recognizability of black lines in the image – using a standard (elementary triangle) – helpful in obtaining unique result of line simplification, and an assessment of the process; • recognizability distance between lines of close buildings, securing unique aggregation of them; • verification of spatial object image lines visualization. The new solutions were tested with the Douglas-Peucker (1973) generalization algorithm, modified by the author, which treats the minimal dimensions as geometric attributes, while object classes and their data hierarchy as descriptive attributes. This approach secures uniqueness of results on any level of generalization process, in which data of spatial objects in the DLM model are transformed to conform with the requirements for the DCM model data.
Go to article

Authors and Affiliations

Tadeusz Chrobak

This page uses 'cookies'. Learn more