Search results

Filters

  • Journals
  • Date

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One of the fundamental problems of modern geodesy is precise de fi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth’s environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System) and institutions of IAS (International Altimetry Service). This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signi fi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.
Go to article

Authors and Affiliations

Adam Bolesław Łyszkowicz
Anna Bernatowicz
Download PDF Download RIS Download Bibtex

Abstract

In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefits it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service , Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientific and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.
Go to article

Authors and Affiliations

Selma Zengin Kazancı
Emine Tanır Kayıkçı
Download PDF Download RIS Download Bibtex

Abstract

The dedicated gravity satellite missions, in particular the GRACE (Gravity Recovery and Climate Experiment) mission launched in 2002, provide unique data for studying temporal variations of mass distribution in the Earth’s system, and thereby, the geometry and the gravity field changes of the Earth. The main objective of this contribution is to estimate physical height (e.g. the orthometric/normal height) changes over Central Europe using GRACE satellite mission data as well as to analyse them and model over the selected study area. Physical height changes were estimated from temporal variations of height anomalies and vertical displacements of the Earth surface being determined over the investigated area. The release 5 (RL05) GRACE-based global geopotential models as well as load Love numbers from the Preliminary Reference Earth Model (PREM) were used as input data. Analysis of the estimated physical height changes and their modelling were performed using two methods: the seasonal decomposition method and the PCA/ EOF (Principal Component Analysis/Empirical Orthogonal Function) method and the differences obtained were discussed. The main findings reveal that physical height changes over the selected study area reach up to 22.8 mm. The obtained physical height changes can be modelled with an accuracy of 1.4 mm using the seasonal decomposition method.
Go to article

Authors and Affiliations

Małgorzata Szelachowska
Jan Krynski
Walyeldeen Godah
Download PDF Download RIS Download Bibtex

Abstract

We evaluated the performance of nine machine learning regression algorithms and their ensembles for sub-pixel estimation of impervious areas coverages from Landsat imagery. The accuracy of imperviousness mapping in individual time points was assessed based on RMSE, MAE and R 2 . These measures were also used for the assessment of imperviousness change intensity estimations. The applicability for detection of relevant changes in impervious areas coverages at sub-pixel level was evaluated using overall accuracy, F-measure and ROC Area Under Curve. The results proved that Cubist algorithm may be advised for Landsat-based mapping of imperviousness for single dates. Stochastic gradient boosting of regression trees (GBM) may be also considered for this purpose. However, Random Forest algorithm is endorsed for both imperviousness change detection and mapping of its intensity. In all applications the heterogeneous model ensembles performed at least as well as the best individual models or better. They may be recommended for improving the quality of sub-pixel imperviousness and imperviousness change mapping. The study revealed also limitations of the investigated methodology for detection of subtle changes of imperviousness inside the pixel. None of the tested approaches was able to reliably classify changed and non-changed pixels if the relevant change threshold was set as one or three percent. Also for five percent change threshold most of algorithms did not ensure that the accuracy of change map is higher than the accuracy of random classifier. For the threshold of relevant change set as ten percent all approaches performed satisfactory.
Go to article

Authors and Affiliations

Wojciech Drzewiecki
Download PDF Download RIS Download Bibtex

Abstract

Land consolidation procedures are an attempt to comprehensively change the existing spatial structure of land in rural areas. This treatment also brings many other social and economic benefits, contributing to the development of consolidated areas. Land consolidation in mountain areas differs in many respects from those implemented in areas with more favorable conditions for the functioning of agriculture. The unfavorable values of land fragmentation indices, terrain conditions and lower than the average soil quality affect both the dominant forms of agricultural activity and the limited opportunities to improve the distribution of plots in space, parameters of shape, and the area as a result of land consolidation. For this reason, the effectiveness of land consolidation in mountain areas can be achieved by improving the quality of transportation network and the accessibility of the plots, arranging ownership issues and improving the quality of cadastral documentation. This article presents the evaluation of the measures of effectiveness of land consolidation realized in mountain areas on the example of Łetownia Village in the Małopolska Province, located in the southern part of Poland. Selected village is an area with unfavorable conditions for the functioning of agriculture and high values of land fragmentation indices.
Go to article

Authors and Affiliations

Jarosław Janus
Magdalena Łopacka
Ewa John
Download PDF Download RIS Download Bibtex

Abstract

The cadastral data, including land parcels, are the basic reference data for presenting various objects collected in spatial databases. Easy access to up-to-date records is a very important matter for the individuals and institutions using spatial data infrastructure. The primary objective of the study was to check the current accessibility of cadastral data as well as to verify how current and complete they are. The author started researching this topic in 2007, i.e. from the moment the Team for National Spatial Data Infrastructure developed documentation concerning the standard of publishing cadastral data with the use of the WMS. Since ten years, the author was monitoring the status of cadastral data publishing in various districts as well as participated in data publishing in many districts. In 2017, when only half of the districts published WMS services from cadastral data, the questions arise: why is it so and how to change this unfavourable status? As a result of the tests performed, it was found that the status of publishing cadastral data is still far from perfect. The quality of the offered web services varies and, unfortunately, many services offer poor performance; moreover, there are plenty services that do not operate at all.
Go to article

Authors and Affiliations

Waldemar Izdebski
Download PDF Download RIS Download Bibtex

Abstract

The cognitive aim of this study is to point to the optimum number of local government units and the optimum boundaries of spatial units in Poland with the assumption of minimizing the cumulated theoretical travel time to all settlement units in the country. The methodological aim, in turn, is to present the use of the ArcGIS location-allocation tool for the purposes of delimitation processes as exemplified by administrative boundaries in Poland. The rationale for the implementation of this study is that number and the boundaries of units of all levels of Poland’s current territorial division are far from optimum in the light of minimization of accumulated theoretical travel time to all settlement units in the country. It may be concluded that it would be justifiable to increase the number of voivodships from the current number of 16 to 18. Besides it would be necessary to introduce modifications in relation to units with regional functions. In contrast, the number of districts and communes should be reduced. A continuation of this research may go in the direction of including analysis of public transport network in the research, creating in this way a multimodal set of network data. This would illustrate, apart from the potential itself resulting from the infrastructure, also the actually existing connections.
Go to article

Authors and Affiliations

Marta Borowska-Stefańska
Szymon Wiśniewski

This page uses 'cookies'. Learn more