Search results

Filters

  • Journals

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Referring to the Guide to the Expression of Uncertainty in Measurement (GUM), the paper proposes a theoretical contribution to assess the uncertainty interval, with relative confidence level, in the case of n successive observations. The approach is based on the Chi-square and Fisher distributions and the validity is proved by a numerical example. For a more detailed study of the uncertainty evaluation, a model for the process variability has been also developed.
Go to article

Authors and Affiliations

Marcantonio Catelani
Andrea Zanobini
Lorenzo Ciani
Download PDF Download RIS Download Bibtex

Abstract

This paper considers the problem of reconstructing a class of generalized sampled signals of which a special case occurs in, e.g., a generalized sampling system due to non-ideal analysis basis functions. To this end, we propose an improved reconstruction system and a reconstruction algorithm based on generalized inverse, which can be viewed as a reconstruction method that reduces reconstruction error as well. The key idea is to add an additional channel into a generalized sampling system and apply the generalized inverse theory to the reconstruction algorithm. Finally, the approach is applied, respectively, to an oscilloscope, which shows the proposed method yields better performance as compared to the existing technique.
Go to article

Authors and Affiliations

Zhu Zhaoxuan
Wang Houjun
Wang Zhigang
Zhang Hao
Download PDF Download RIS Download Bibtex

Abstract

A checkweigher is an automatic machine to measure the weight of in-motion products. It is usually located around the end of the production process and ensures the weight of a product within specified limits. Any products are taken out of line if their weights are out of the specified limits. It is usually equipped with an optical device. It is used to make a trigger to set the time duration to allow a product to move completely on the weigh belt for sampling the weight. In this paper, a new method of mass measurement for checkweighers is proposed which uses just signal processing without the optical device. The effectiveness of the method is shown through experiments. Also a possibility of faster estimation of weight is shown.
Go to article

Authors and Affiliations

Kengo Fukuda
Koji Yoshida
Tetsuya Kinugasa
Morihito Kamon
Yoichiro Kagawa
Toshiro Ono
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a comparison analysis of three different algorithms for the estimation of sine signal parameters in two-channel common frequency situations is presented. The relevance of this situation is clearly understood in multiple applications where the algorithms have been applied. They include impedance measurements, eddy currents testing, laser anemometry and radio receiver testing for example. The three algorithms belong to different categories because they are based on different approaches. The ellipse fit algorithm is a parametric fit based on the XY plot of the samples of both signals. The seven parameter sine fit algorithm is a least-squares algorithm based on the time domain fitting of a single tone sinewave model to the acquired samples. The spectral sinc fit performs a fitting in the frequency domain of the exact model of an acquired sinewave on the acquired spectrum. Multiple simulation situations and real measurements are included in the comparison to demonstrate the weaknesses and strong points of each algorithm.
Go to article

Authors and Affiliations

Pedro Ramos
Fernando Janeiro
Tomáš Radil
Download PDF Download RIS Download Bibtex

Abstract

A real narrowband noise signal representation in the form of an analytical signal in the Hilbert space is presented in the paper. This analytical signal is illustrated in a variable complex plane as a mark with defined amplitude, phase, pulsation and instantaneous frequency. A block diagram of a broadband product detector in a quadrature system is presented. Measurement results of an autocorrelation function of a noise signal are shown and the application of such solution in a noise radar for precise determination of distance changes as well as velocities of these changes are also presented. Conclusions and future plans for applications of the presented detection technique in broadband noise radars bring the paper to an end.
Go to article

Authors and Affiliations

Waldemar Susek
Bronisław Stec
Download PDF Download RIS Download Bibtex

Abstract

The interesting properties of a class of expanding systems are discussed. The operation of the considered systems can be described as follows: the input signal is processed by a linear dynamic converter in subsequent time intervals, each of them is equal to Ti. Processing starts at the moments n · Ti, always after zeroing of converter initial conditions. For smooth input signals and a given transfer function of the converter one can suitably choose Ti and the gain coefficient in order to realize the postulated linear operations on input signals, which is quite different comparing it to the operation realized by the converter. The errors of postulated operations are mainly caused by non-smooth components of the input signal. The principles for choice of system parameters and rules for system optimization are presented in the paper. The referring examples are attached too.
Go to article

Authors and Affiliations

Adam Żuchowski
Download PDF Download RIS Download Bibtex

Abstract

The present work offers new equations for phase evaluation in measurements. Several phase-shifting equations with an arbitrary but constant phase-shift between captured intensity signs are proposed. The equations are similarly derived as the so called Carré equation. The idea is to develop a generalization of the Carré equation that is not restricted to four images. Errors and random noise in the images cannot be eliminated, but the uncertainty due to their effects can be reduced by increasing the number of observations. An experimental analysis of the errors of the technique was made, as well as a detailed analysis of errors of the measurement. The advantages of the proposed equation are its precision in the measures taken, speed of processing and the immunity to noise in signs and images.
Go to article

Authors and Affiliations

Pedro Magalhaes
Perrin Neto
Cristina Magalhães
Download PDF Download RIS Download Bibtex

Abstract

The use of surface analysis to investigate brake elements shows how a pair in contact works and wears out during regular operation. The main purpose of this paper is to describe the asperities from initial state to a moment when further use of the drum and shoe is not possible. Between exchange of vital brake elements a truck with total mass exceeding 3.5 tons can cover as many as 300 000 kilometres. Use of brakes during the first 1000 kilometres after maintenance should be rather gentle with possibly intensive use of engine brake installed in the truck itself, because if this rule is not adhered to it may lead to a significant decrease of the braking force and on the surface of the pair in contact a layer will appear that is not possible to wear off and that will make it impossible to stop a truck using brakes. In that condition the shoe should be immediately replaced and the drum should be remachined (by turning) to a repair dimension. In the paper the condition and analysis of a surface after different course of exploitation was presented.
Go to article

Authors and Affiliations

Michał Wieczorowski
Robert Mrozek
Paweł Andrałojć
Download PDF Download RIS Download Bibtex

Abstract

The possibility or even necessity of revising definitions of some of the base units of the present SI has been discussed over the past 15 years. The last General Conference of Weights and Measures (2007) recommended to redefine the kilogram, the ampere, the kelvin, and the mole using fixed values of the fundamental constants by the time of the next General Conference in 2011. This paper is a review of proposals of new definitions of units of mentioned quantities and arguments voting for particular variants of definitions. Most relevant papers for this review have been published by Metrologia, the international journal appointed at the BIPM, and many other useful pieces of information are available on www pages of the BIPM. The author notes that not only new definitions have been discussed but as well as the set of the base units of the SI. It means a replacement of the ampere by the volt or the kelvin by the joule. Decisions concerning new definitions are not made and the discussions are still open.
Go to article

Authors and Affiliations

Waldemar Nawrocki
Download PDF Download RIS Download Bibtex

Abstract

Many studies have been developed aiming to improve digital filters realizations, recurring to intricate structures and analyzing probabilistically the error's behavior. The work presented in this paper analyzes the feasibility of fixed-point implementation of classical infinite impulse response notch filters: Butterworth, Chebyshev I and II, and elliptic. To scrutinize the deformations suffered for distinct design specifications, it is assessed: the effect of the quality factor and normalized cut-off frequency, in the number of significant bits necessary to represent the filter's coefficients. The implications brought to FPGA implementation are also verified. The work focuses especially on the implementation of power line notch filters used to improve the signal-to-noise ratio in biomedical signals. The results obtained, when quantizing the digital notch filters, show that by applying second-order sections decomposition, low-order digital filters may be designed using only part of double precision capabilities. High-order notch filters with harsh design constraints are implementable using double precision, but only in second-order sections. Thus, it is revealed that to optimize computation time in real-time applications, an optimal digital notch filter implementation platform should have variable arithmetic precision. Considering these implementation constraints, utmost operation performance is finally estimated when implementing digital notch filters in Xilinx Virtex-5 field-programmable gate arrays. The influence of several design specifications, e.g. type, and order, in the filter's behavior was evaluated, namely in regard to order, type, input and coefficient number of bits, quality factor and cut-off frequency. Finally the implications and potential applications of such results are discussed.
Go to article

Authors and Affiliations

Eduardo Pinheiro
Octavian Postolache
Pedro Girão
Download PDF Download RIS Download Bibtex

Abstract

Paper deals with the new localizer GLOP2 designed for detection of the miners trapped in underground hard coal mines. The results of a field test conducted in coal mine BOBREK show that the presented localizer allows for efficient measurement of the distance between a trapped miner and the rescuer in the range of up to 15 m.
Go to article

Authors and Affiliations

Piotr Burnos
Janusz Gajda
Piotr Maj
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study of the Fourier transform method for parameter identification of a linear dynamic system in the frequency domain using fractional differential equations. Fundamental definitions of fractional differential equations are briefly outlined. The Fourier transform method of identification and their algorithms are generalized so that they include fractional derivatives and integrals.
Go to article

Authors and Affiliations

Tomasz Janiczek
Janusz Janiczek
Download PDF Download RIS Download Bibtex

Abstract

Nowadays a geometrical surface structure is usually evaluated with the use of Fourier transform. This type of transform allows for accurate analysis of harmonic components of surface profiles. Due to its fundamentals, Fourier transform is particularly efficient when evaluating periodic signals. Wavelets are the small waves that are oscillatory and limited in the range. Wavelets are special type of sets of basis functions that are useful in the description of function spaces. They are particularly useful for the description of non-continuous and irregular functions that appear most often as responses of real physical systems. Bases of wavelet functions are usually well located in the frequency and in the time domain. In the case of periodic signals, the Fourier transform is still extremely useful. It allows to obtain accurate information on the analyzed surface. Wavelet analysis does not provide as accurate information about the measured surface as the Fourier transform, but it is a useful tool for detection of irregularities of the profile. Therefore, wavelet analysis is the better way to detect scratches or cracks that sometimes occur on the surface. The paper presents the fundamentals of both types of transform. It presents also the comparison of an evaluation of the roundness profile by Fourier and wavelet transforms.
Go to article

Authors and Affiliations

Krzysztof Stępień
Włodzimierz Makieła
Stanisław Adamczak

This page uses 'cookies'. Learn more