Search results

Filters

  • Journals
  • Date

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Most systems used in quantum physics experiments require the efficient and simultaneous recording different multi-photon coincidence detection events. In such experiments, the single-photon gated counting systems can be applicable. The main sources of errors in these systems are both instability of the clock source and their imperfect synchronization with the excitation source. Below, we propose a solution for improvement of the metrological parameters of such measuring systems. Thus, we designed a novel integrated circuit dedicated to registration of signals from a photon number resolving detectors including a phase synchronizer module. This paper presents the architecture of a high-resolution (~60 ps) digital phase synchronizer module cooperating with a multi-channel coincidence counter. The main characteristic feature of the presented system is its ability to fast synchronization (requiring only one clock period) with the measuring process. Therefore, it is designed to work with various excitation sources of a very wide frequency range. Implementation of the phase synchronizer module in an FPGA device enabled to reduce the synchronization error value from 2.857 ns to 214.8 ps.

Go to article

Authors and Affiliations

Robert Frankowski
Marcin Kowalski
Dariusz Chaberski
Marek Zieliński
Download PDF Download RIS Download Bibtex

Abstract

Internet of Things (IoT) will play an important role in modern communication systems. Thousands of devices will talk to each other at the same time. Clearly, smart and efficient hardware will play a vital role in the development of IoT. In this context, the importance of antennas increases due to them being essential parts of communication networks. For IoT applications, a small size with good matching and over a wide frequency range is preferred to ensure reduced size of communication devices. In this paper, we propose a structure and discuss design optimization of a wideband antenna for IoT applications. The antenna consists of a stepped-impedance feed line, a rectangular radiator and a ground plane. The objective is to minimize the antenna footprint by simultaneously adjusting all geometry parameters and to maintain the electrical characteristic of antenna at an acceptable level. The obtained design exhibits dimensions of only 3.7 mm × 11.8 mm and a footprint of 44 mm2, an omnidirectional radiation pattern, and an excellent pattern stability. The proposed antenna can be easily handled within compact communication devices. The simulation results are validated through measurements of the fabricated antenna prototype.

Go to article

Authors and Affiliations

Muhammad Aziz ul Haq
Sławomir Kozieł
Download PDF Download RIS Download Bibtex

Abstract

The paper puts forward and implements a method of designing and creating a modelling simulation environment for extensive and complete analysis of economical lighting on highways. From a general design viewpoint, the proposed solution explores the concept of a network description language (SMOL), which has been designed to describe the necessary network functions, mechanisms, and devices for the purpose of their computer simulation and verification. The presented results of the performed research confirm the usability of intelligent lighting on highways, both in the sense of the design concept and in the aspect of saving energy.

Go to article

Authors and Affiliations

Zdzisław Kowalczuk
Jakub Wszołek
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the issue of constructing delay lines on the basis of surface acoustic waves and their application to single-mode oscillators. As a result of a theoretical analysis concrete delay lines are proposed.

In the contribution, there is presented a theory of designing a symmetrical mismatched and matched delay line for a single-mode oscillator of electrical signals on the basis of which there were designed and fabricated acoustic-electronic components for sensors of non-electrical quantities.

From the experimental results it can be stated that all of six designed and fabricated delay lines can be effectively used in the construction of single-mode oscillators.

Go to article

Authors and Affiliations

Milan Šimko
Miroslav Gutten
Milan Chupáč
Daniel Korenčiak
Download PDF Download RIS Download Bibtex

Abstract

The telemetry data are essential in evaluating the performance of aircraft and diagnosing its failures. This work combines the oversampling technology with the run-length encoding compression algorithm with an error factor to further enhance the compression performance of telemetry data in a multichannel acquisition system. Compression of telemetry data is carried out with the use of FPGAs. In the experiments there are used pulse signals and vibration signals. The proposed method is compared with two existing methods. The experimental results indicate that the compression ratio, precision, and distortion degree of the telemetry data are improved significantly compared with those obtained by the existing methods. The implementation and measurement of the proposed telemetry data compression method show its effectiveness when used in a high-precision high-capacity multichannel acquisition system.

Go to article

Authors and Affiliations

Xiaopu Shang
Yongfeng Ren
Guoyong Zheng
Kaiqun Wang
Download PDF Download RIS Download Bibtex

Abstract

This work is focused on the issue of non-measured points – one of the most important problems in surface texture measurements using optical methods. The fundamental aim of this research is to analyse errors of surface texture measurements caused by the presence of non-measured points. This study is divided into two parts. In the first part, circles with non-measured points were artificially created on peak portions of measured surfaces. In the second part – the results of measurement by a Talysurf CCI Lite interferometer were analysed. A measurement area of 3.3 × 3.3 mm contained 1024 × 1024 points. The measurements were performed with different intensity of light. Changes of parameters regarding the analysed errors depended on a surface type. The following parameters are susceptible to errors: skewness Ssk, areal material ratio Smr, as well as the following feature parameters: Spd, Sda, Sdv, Sha and Shv. Inaccuracies of measurement in valley parts of two-process textures led usually to larger errors of parameter computations compared with deviations in peak portions.

Go to article

Authors and Affiliations

Paweł Pawlus
Rafał Reizer
Michał Wieczorowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an experimental study on influence of input light polarization on the spectral characteristics of a fibre twist sensor based on Tilted Fiber Bragg Grating (TFBG) with simultaneous application of bending to an optical fibre. The application of proposed measurement stand could provide the ability of transforming the bending to a displacement. The twist measurement was performed by tuning of the sensor illuminating light polarization angle. The spectral parameters of selected cladding mode which are sensitive to the rotation of input light polarization angle have been shown. This paper shows the characteristics of transmittivity and wavelength shift for an incident high-order cladding mode measured with different curvatures of fibre. The dependency of selected cladding mode spectral parameters related with the twist measurement on the influence of temporary bending has been shown. The measurements were performed for two positions of sensing structure refractive index perturbations in relation to the bending direction plane. The experimental results show that the direction of TFBG structure bending has a small influence on the stability of spectral parameters characteristic for twist measurement, assuming that the bending direction is fixed while measurement.

Go to article

Authors and Affiliations

Damian Harasim
Download PDF Download RIS Download Bibtex

Abstract

In this work we report simulation and experimental results for an MWIR HgCdTe photodetector designed by computer simulation and fabricated in a joint laboratory run by VIGO Sytems S.A. and Military University of Technology. The device is based on a modified N+pP+ heterostructure grown on 2”., epiready, semi-insulating (100) GaAs substrates in a horizontal MOCVD AIX 200 reactor.

The devices were examined by measurements of spectral and time responses as a function of a bias voltage and operating temperatures. The time response was measured with an Optical Parametric Oscillator (OPO) as the source of ~25 ps pulses of infrared radiation, tuneable in a 1.55–16 μm spectral range. Two-stage Peltier cooled devices (230 K) with a 4.1 μm cut-off wavelength were characterized by 1.6 × 1012 cm Hz1/2/W peak detectivity and < 1 ns time constant for V > 500 mV.

Go to article

Authors and Affiliations

Kacper Grodecki
Piotr Martyniuk
Małgorzata Kopytko
Andrzej Kowalewski
Dawid Stępień
Artur Kębłowski
Adam Piotrowski
Józef Piotrowski
Waldemar Gawron
Antoni Rogalski
Download PDF Download RIS Download Bibtex

Abstract

A correlation measuring tool for an endogenous pulsed neutron source experiment is developed in this work. Paroxysmal pulses generated by a bursts of neutron chains are detected by a 10-kbit embedded shift register with a time resolution of 100 ns. The system is implemented on a single reprogrammable device making it a compact, cost-effective instrument, easily adaptable for any case study. The system was verified experimentally in the Esfahan heavy-water zero power reactor (EHWZPR). The results obtained by the measuring tool are validated by the Feynman-α experiment, and a good agreement is seen within the boundaries of statistical uncertainties. The theory of the methods is briefly initiated in the text. Also, the system structure is described, the experimental results and their uncertainties are discussed, and neutron statistics in EHWZPR is examined experimentally.

Go to article

Authors and Affiliations

Mohammad Arkani
Hossein Khalafi
Naser Vosoughi
Samad Khakshournia
Download PDF Download RIS Download Bibtex

Abstract

Although the gas insulated structures have a high degree of reliability, the unavoidable defects are primary reason of their failures. Partial discharge (PD) has been regarded as an effective indication for condition monitoring and diagnosis of gas insulated switchgears (GISs) to ensure their reliable and stable operation. Among various PD detection methods, the ultra-high frequency (UHF) technique has the advantages of on-line motoring and defect classification. In this paper, there are presented 7 types of artificial electrode systems fabricated for simulation of real insulation defects in gas insulated structures. A real-time measurement system was developed to acquire defect patterns in a form of phase-resolve partial discharge (PRPD) intensity graph, using a UHF sensor. Further, the discharge distribution and statistical characteristics were extracted for defect identification using a neural network algorithm. In addition, a conversion experiment was proposed by detecting the PD pulse simultaneously using a non-induction resistor and a UHF sensor. A relationship between the magnitude of UHF signal and the amplitude of apparent charge was established, which was used for evaluation of PD using the UHF sensor.

Go to article

Authors and Affiliations

Guoming Wang
Gyung-Suk Kil
Download PDF Download RIS Download Bibtex

Abstract

Size-dependent dynamic instability of cylindrical nanowires incorporating the effects of Casimir attraction and surface energy is presented in this research work. To develop the attractive intermolecular force between the nanowire and its substrate, the proximity force approximation (PFA) for small separations, and the Dirichlet asymptotic approximation for large separations with a cylinder-plate geometry are employed. A nonlinear governing equation of motion for free-standing nanowires – based on the Gurtin-Murdoch model – and a strain gradient elasticity theory are derived. To overcome the complexity of the nonlinear problem in hand, a Garlerkin-based projection procedure for construction of a reduced-order model is implemented as a way of discretization of the governing differential equation. The effects of length-scale parameter, surface energy and vacuum fluctuations on the dynamic instability threshold and adhesion of nanowires are examined. It is demonstrated that in the absence of any actuation, a nanowire might behave unstably, due to the Casimir induction force.

Go to article

Authors and Affiliations

Hamid M. Sedighi
Hassen M. Ouakad
Moosa Khooran

This page uses 'cookies'. Learn more