Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study presents a comparison of the results of structural tests, impact strength and strength properties of cast iron EN-GJS-400-15, which is produced in industrial conditions and the ductile cast iron, with addition of nickel, in austenitic matrix. Due to the ongoing energy transformation and attempts to inject hydrogen into existing gas grids, gas fittings manufacturers are looking for materials that will be more resistant to the destructive effects of hydrogen than the currently used ductile cast iron. The aim of the work was to obtain cast iron with the addition of nickel (about 20%) with similar strength parameters, better impact strength, both at room temperature and at lower temperatures, as well as a stable austenitic matrix in ductile cast iron. All assumptions were achieved. In the future, research should be undertaken to develop an economically optimal chemical composition, without a significant loss of strength properties, and the resistance of gate valves made of austenitic cast iron to the destructive effects of hydrogen should be examined. The work is preliminary research.
Go to article

Bibliography

[1] Kanellopoulos, K., Busch, S., De Felice, M., Giaccaria, S. and Costescu, A. (2022). Blending hydrogen from electrolysis into the European gas grid. EUR 30951 EN, Publications Office of the European Union, Luxembourg, 2022, ISBN 978-92-76-46346-7, DOI:10.2760/908387, JRC 126763.

[2] ToGetAir. (2024). Hydrogen Needs Strong Support. Retrieved December, 18, 2023 from https://raport.togetair.eu/ogien/energia-przyszlosci/wodor-potrzebuje-mocnego-wsparcia. (in Polish).

[3] Jaworski, J., Kukulska-Zając, E. & Kułaga, P. (2019). Selected issue regarding the impact of addition of hydrogen to natural gas on the elements of the gas system. Nafta-Gaz. 10, 625-632. DOI: 10.18668/NG.2019.10.04. (in Polish).

[4] Bąkowski, K, (2007). Gas grids and installations – guide. Warszawa: WNT. (in Polish).

[5] EN 13774:2013 Valves for gas distribution system with maximum operating pressure less than or equal to 16 bar – Performance requirements.

[6] Regulation of the Minister of Economy of April 26, 2013 on the technical conditions to be met by gas grids and their location. (Dz.U z 2013 r., Nr 0, poz. 640). (in Polish).

[7] Information Publication 11/I, Safe use of hydrogen as fuel in commercial industrial applications, Polish Ship Register, Gdańsk 2021, p 36 (in Polish)

[8] Sahiluoma, P., Yagodzinskyy, Y., Forsström, A., Hänninen, H. & Bossuyt, S. (2021). Hydrogen embrittlement of nodular cast iron. Materials and Corrosion. 72(1-2), 245-254. DOI: 10.1002/maco.202011682.

[9] Yoshimoto, T., Matsuo, T. & Ikeda, T. (2019). The effect of graphite size on hydrogen absorption and tensile properties of ferritic ductile cast iron. Procedia Structural Integrity. 14, 18-25. https://doi.org/10.1016/j.prostr.2019.05.004.

[10] Elboujdaini E. (2011). Hydrogen-Induced Cracking and Sulfide Stress Cracking. Uhlig’s Corrosion Handbook. R. Winston Revie (red.). Wiley, 183-194.

[11] Gangloff, R.P. (2012). Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing.

[12] Jiaxing Liu, Mingjiu Zhao, Lijian Rong (2023). Overview of hydrogen-resistant alloys for high-pressure hydrogen environment: on the hydrogen energy structural materials. Clean Energy. 7(1), 99-115. https://doi.org/10.1093/ce/zkad009.

[13] Dwivedi, S.K. & Vishwakarma. M. (2018). Hydrogen embrittlement in different materials: A review. International Journal of Hydrogen Energy. 43(46), 21603-21616. https://doi.org/10.1016/j.ijhydene.2018.09.201.

[14] Dziadur, W., Lisak, J., & Tabor A. (2004). Corrosion testing of high-nickel ductile cast iron. Journal of Applied Materials Engineering. 6, 28-32. (in Polish).

[15] Guzik, E., Kopyciński, D. (2004). Structure and impact strength of austenitic ductile iron. Archives of Foundry. 4(12), 115-120. ISSN 1642-5308. (in Polish).

[16] Tabor, A., Putyra, P., Zarębski, P. & Maguda, T. (2009). Austenitic ductile iron for low temperature applications. Archives of Foundry Engineering. 9(1), 163-168. ISSN (1897-3310).

Go to article

Authors and Affiliations

A. Rączka
1
A. Szczęsny
2
ORCID: ORCID
D. Kopyciński
2
ORCID: ORCID

  1. Fabryka Armatur JAFAR S.A. Kadyiego 12 Street 38-200 Jasło, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-065 Kraków, Poland

This page uses 'cookies'. Learn more