Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of studies of hybrid composite layers Ni/Al2O3/Cgraphite produced by the electrodeposition method. Three variants of hybrid composite layers were prepared in electrolyte solutions with the same amounts of each dispersion phases which were equal to 0.25; 0.50 and 0.75 g/dm3. The structure of Ni/Al2O3/Cgraphite layers as well as the Al2O3 and graphite powders, which were used as dispersion phases was investigated. The results of morphology and surface topography of produced layers are presented. The modulus of elasticity and microhardness of the material of produced layers were determined by DSI method. Tribological and corrosion resistance tests of produced layers were carried out. Realized studies have shown that the material of the produced layers is characterized by a nanocrystalline structure. Incorporation of dispersion phases into the nickiel matrix increases the degree of surface development of layers. Ni/Al2O3/Cgraphite layers are characterized by high hardness and abrasion resistance by friction, furthermore, they provide good corrosion protection for the substrate material.

Go to article

Authors and Affiliations

W. Bartoszek
M. Trzaska
Download PDF Download RIS Download Bibtex

Abstract

The present study evaluates the microstructural features, mechanical properties, and wear characteristics of the newly developed hybrid composite of A356/ZrO2/Al2O3/SiC produced by compo-casting at 605±5 °C, 600 rpm for 15 minutes with less than 30% solid fraction in which Bi and Sn were added separately to the matrix before introducing reinforcements. FESEM micrographs and corresponding EDS illustrated the successful incorporation of particles in the matrix. Fine particles of ZrO2 were observed close to the coarse Al2O3, and SiC particles, along with Bi and Sn elements, were detected at the eutectic evolution region. The A356+Bi/Al2O3+ZrO2+SiC hybrid composite exhibited the lowest specific wear rate (1.642 ×10-7cm3/Nm) and friction coefficient (0.31) under applied loads of 5, 10, and 20 N, in line with the highest hardness (73.4 HBN). Analysis of the worn surfaces revealed that the wear mechanism is mostly adhesive in all synthesized composites, which changed to the combination of adhesive and abrasive mode in the case containing Bi and SiC. Inserting Bi not only leads to the refinement of eutectic Si but also enhances the adhesion between the matrix/particles and improves lubricity. This, in turn, reduces the wear rate and coefficient of friction, ultimately improving the performance of the hybrid composite.
Go to article

Bibliography

[1] Liang, Y.H., Wang, H.Y. & Yang, Y.F. (2008). Evolution process of the synthesis of TiC in the Cu-Ti-C system, Journal of Allloys and Compounds. 452(2), 298-303. https://doi.org/10.1016/j.jallcom.2006.11.024.

[2] Sahraeinejad, S., Izadi, H., Haghshenas, M. & Gerlich, A.P. (2015). Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters. Materials Science and Engineering: A. 626, 505-513. https://doi.org/https://doi.org/10.1016/j.msea. 2014.12.077.

[3] Devaraju, A., Kumar, A. & Kotiveerachari, B. (2013). Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing. Transactions of Nonferrous Metals Society of China (English Edition). 23(5), 1275-1280. https://doi.org/10.1016/S1003-6326(13)62593-5.

[4] Rajmohan, T., Palanikumar, K. & Ranganathan, S. (2013). Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Transactions of Nonferrous Metals Society of China (English Edition). 23(9), 2509-2517. https://doi.org/10.1016/S1003-6326(13)62762-4.

[5] Shayan, M., Eghbali, B. & Niroumand, B. (2019). Synthesis of AA2024-(SiO2np+TiO2np) hybrid nanocomposite via stir casting process. Materials Science and Engineering A. 756, 484-491. https://doi.org/10.1016/j.msea.2019.04.089.

[6] Rajmohan, T., Palanikumar, K. & Ranganathan, S. (2013). Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Transactions of Nonferrous Metals Society of China. 23(9), 2509-2517. https://doi.org/https://doi.org/10.1016/S1003-6326(13)62762-4.

[7] Lemine, A.S., Fayyaz, O., Yusuf, M., Shakoor, R.A., Ahmad, Z., Bhadra, J. & Al-Thani, N.J. (2022). Microstructure and mechanical properties of aluminum matrix composites with bimodal-sized hybrid NbC-B4C reinforcements. Materials Today Communications. 33, 104512, 1-10. https://doi.org/https://doi.org/10.1016/ j.mtcomm.2022.104512.

[8] Singh, J. & Chauhan, A. (2016). Characterization of hybrid aluminum matrix composites for advanced applications - A review. Journal of Materials Research and Technology. 5(2), 159-169. https://doi.org/10.1016/j.jmrt.2015.05.004.

[9] Fanani, E.W.A., Surojo, E., Prabowo, A.R. & Akbar, H.I. (2021). Recent progress in hybrid aluminum composite: Manufacturing and application, Metals (Basel). 11(12), 1919, 1-30. https://doi.org/10.3390/met11121919.

[10] Chandel, R., Sharma, N. & Bansal, S.A. (2021). A review on recent developments of aluminum-based hybrid composites for automotive applications. Emergent Materials. 4, 1243-1257. https://doi.org/10.1007/s42247-021-00186-6.

[11] James, J.S., Ganesan, M., Santhamoorthy, P. & Kuppan, P. (2018). Development of hybrid aluminium metal matrix composite and study of property. Materials Today Proceedings. 5(5), 13048-13054. https://doi.org/https:// doi.org/10.1016/j.matpr.2018.02.291.

[12] Srivyas, P.D. & Charoo, M.S. (2019). Application of hybrid aluminum matrix composite in automotive industry, in: Materials Today Proceedings. 18(7), 3189-3200. https://doi.org/10.1016/j.matpr.2019.07.195.

[13] Pranavi, U., Venkateshwar Reddy, P., Venukumar, S. & Cheepu, M. (2022). Evaluation of mechanical and wear properties of Al 5059/B4C/Al2O3 hybrid metal matrix composites. Journal of Composites Science. 6(3), 86, 1-13. https://doi.org/10.3390/jcs6030086.

[14] Kumaran, S.T., Uthayakumar, M., Aravindan, S., Rajesh, S. (2016). Dry sliding wear behavior of SiC and B4C-reinforced AA6351 metal matrix composite produced by stir casting process, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 230(2), 484-491. https://doi.org/10.1177/1464420715579302.

[15] Khatkar, S.K., Suri, N.M., Kant, S. & Pankaj, (2018). A review on mechanical and tribological properties of graphite reinforced self lubricating hybrid metal matrix composites. Reviews on Advanced Materials Science. 56, 1-20. https://doi.org/10.1515/rams-2018-0036.

[16] Malaki, M., Fadaei Tehrani, A., Niroumand, B. & Gupta, M. (2021). Wettability in metal matrix composites. Metals. 11(7), 1034, 1-24. https://doi.org/10.3390/met11071034.

[17] Amirkhanlou, S. & Niroumand, B. (2010). Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods. Transactions of Nonferrous Metals Society of China. 20(3), 788-793. https://doi.org/https://doi.org/10.1016/S1003-6326(10)60582-1.

[18] Ghandvar, H., Farahany, S. & Idris, M.H. (2018). Effect of Wettability Enhancement of SiC Particles on Impact Toughness and Dry Sliding Wear Behavior of Compocasted A356/20SiCp Composites. Tribology Transactions. 61, 88-99. https://doi.org/10.1080/10402004.2016.1275902.

[19] Geng, L., Zhang, H., Li, H., Guan, L. & Huang, L. (2010). Effects of Mg content on microstructure and mechanical properties of SiCp/Al-Mg composites fabricated by semi-solid stirring technique. Transactions of Nonferrous Metals Society of China 20(10), 1851-1855. https://doi.org/https://doi.org/10.1016/S1003-6326(09)60385-X.

[20] Lashgari, H.R., Sufizadeh, A.R. & Emamy, M. (2010). The effect of strontium on the microstructure and wear properties of A356–10%B4C cast composites. Materials & Design. 31(4), 2187-2195. https://doi.org/10.1016/ J.MATDES.2009.10.049.

[21] Sobczak, N. (2005). Effects of titanium on wettability and interfaces in aluminum/ceramic systems. In K. Ewsuk, K. Nogi, M. Reiterer, A. Tomsia, S. Jill Glass, R. Waesche, K. Uematsu & M. Naito (Eds.), Characterization & Control of Interfaces for High Quality Advanced Materials (81-91). OH, USA 83: The American Ceramic Society: Columbus.

[22] Wójcik-Grzybek, D., Frydman, K., Sobczak, N., Nowak, R., Piatkowska, A. & Pietrzak, K. (2017). Effect of Ti and Zr additions on wettability and work of adhesion in Ag/c system. ElectronicMaterials. 45(1), 4-11.

[23] Cao, C., Chen, L., Xu, J., Choi, H. & Li, X. (2016). Strengthening Al–Bi–TiC0.7N0.3 nanocomposites by Cu addition and grain refinement. Materials Science and Engineering: A. 651, 332-335. https://doi.org/https://doi.org/ 10.1016/j.msea.2015.10.126.

[24] Tao, Z., Guo, Q., Gao, X. & Liu, L. (2011). The wettability and interface thermal resistance of copper/graphite system with an addition of chromium. Materials Chemistry and Physics. 128(1-2), 228-232. https://doi.org/https://doi.org/ 10.1016/j.matchemphys.2011.03.003.

[25] Dasch, J.M., Ang, C.C., Wong, C.A., Waldo, R.A., Chester, D., Cheng, Y.T., Powell, B.R., Weiner, A.M. & Konca, E. (2009). The effect of free-machining elements on dry machining of B319 aluminum alloy. Journal of Materials Processing Technology. 209(10), 4638-4644. https://doi.org/10.1016/j.jmatprotec.2008.11.041.

[26] Farahany, S., Ghandvar, H., Nordin, N.A., Ourdjini, A. & Idris, M.H. (2016). Effect of primary and eutectic Mg2Si crystal modifications on the mechanical properties and sliding wear behaviour of an Al–20Mg2Si–2Cu–xBi composite. Journal of Materials Science & Technology. 32(11), 1083-1097. https://doi.org/10.1016/ j.jmst.2016.01.014.

[27] Ghandvar, H., Farahany, S. & Abu Bakar, T.A. (2020). A novel method to enhance the performance of an ex-situ Al/Si-YSZ metal matrix composite. Journal of Alloys and Compounds. 823, 153673, 1-14. https://doi.org/10.1016/J.JALLCOM.2020.153673.

[28] Barzani, M.M., Farahany, S., Yusof, N.M. & Ourdjini, A. (2013). The influence of bismuth, antimony, and strontium on microstructure, thermal, and machinability of aluminum-silicon alloy. Materials and Manufacturing Processes. 28(11), 1184-1190. https://doi.org/10.1080/10426914. 2013.792425.

[29] Yusof, N.M., Razavykia, A., Farahany, S. & Esmaeilzadeh, A. (2016). Effect of modifier elements on machinability of Al-20%Mg2Si metal matrix composite during dry turning. Machining Science and Technology. 20(3), 460-474. https://doi.org/10.1080/10910344.2016.1191030.

[30] Mohanavel, V., Rajan, K., Suresh Kumar, S., Vijayan, G. & Vijayanand, M.S. (2018). Study on mechanical properties of graphite particulates reinforced aluminium matrix composite fabricated by stir casting technique. Materials Today Proceedings. 5(1), 2945-2950. https://doi.org/10.1016/j.matpr.2018.01.090.

[31] Sharma, P., Sharma, S. & Khanduja, D. (2016). Effect of graphite reinforcement on physical and mechanical properties of aluminum metal matrix composites. Particulate Science and Technology. 34 (1), 17-22. https://doi.org/10.1080/02726351.2015.1031924.

[32] Chandrasheker, J. Raju, N.V.S. (2022). Effect of Graphite Reinforcement on AA7050/B4C Metal Matrix Composites. AIP Conference Proceedings. 2648(1), 030013. https://doi.org/10.1063/5.0117657.

[33] Farahany, S., Ourdjini, A., Bakar, T.A.A. & Idris, M.H. (2014). On the refinement mechanism of silicon in Al-Si-Cu-Zn alloy with addition of bismuth. Metallurgical and Materials Transactions A. 45, 1085–1088. https://doi.org/10.1007/s11661-013-2158-0.

[34] Hemanth, J. (2005). Tribological behavior of cryogenically treated B4Cp/Al–12% Si composites. Wear. 258, 1732–1744. https://doi.org/10.1016/J.WEAR.2004.12.009.

[35] Uvaraja, V.C. & Natarajan, N. (2012). Optimization of Friction and Wear Behaviour in Hybrid Metal Matrix Composites Using Taguchi Technique. Journal of Minerals and Materials Characterization and Engineering. 11, 757-768. https://doi.org/10.4236/jmmce.2012.118063.

[36] Sharma, A., Sharma, V.M. & Paul, J. (2019). A comparative study on microstructural evolution and surface properties of graphene/CNT reinforced Al6061−SiC hybrid surface composite fabricated via friction stir processing. Transactions of Nonferrous Metals Society of China (English Edition). 29(10), 2005-2026. https://doi.org/10.1016/S1003-6326(19)65108-3.

[37] Amra, M., Ranjbar, K. & Hosseini, S.A. (2018). Microstructure and wear performance of Al5083/CeO2/SiC mono and hybrid surface composites fabricated by friction stir processing. Transactions of Nonferrous Metals Society of China (English Edition). 28(5), 866-878. https://doi.org/10.1016/S1003-6326(18)64720-X.

[38] Dinaharan, I. & Murugan, N. (2012). Dry sliding wear behavior of AA6061/ZrB 2 in-situ composite. Transactions of Nonferrous Metals Society of China (English Edition). 22(4), 810-818. https://doi.org/10.1016/S1003-6326(11)61249-1.

[39] Riahi, A.R. & Alpas, A.T. (2001). The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear. 251 (1-12), 1396-1407. https://doi.org/10.1016/s0043-1648(01)00796-7.

[40] Archard, J.F. (1953). Contact and Rubbing of Flat Surfaces. Journal of Applied Physics. 24(8), 981–988. https://doi.org/10.1063/1.1721448.

[41] García, C., Martín, F., Herranz, G., Berges, C. & Romero, A. (2018). Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding, Wear. 414–415. https://doi.org/10.1016/j.wear.2018.08.010.

[42] Pei, X., Pu, W., Yang, J. & Zhang, Y. (2020). Friction and adhesive wear behavior caused by periodic impact in mixed-lubricated point contacts. Advances in Mechanical Engineering. 12(2). https://doi.org/10.1177/1687814020901666.

[43] Popova, E., Popov, V.L. & Kim, D.E. (2018). 60 years of Rabinowicz’ criterion for adhesive wear. Friction. 6, 341-348. https://doi.org/10.1007/s40544-018-0240-8.

Go to article

Authors and Affiliations

S. Farahany
1
M.K. Hamdani
2
M.R. Salehloo
2
M. Krol
2
E. Cheraghali
3

  1. Buein Zahra Technical University, Iran
  2. Iran University of Science and Technology, Iran
  3. Silesian University of Technology
Download PDF Download RIS Download Bibtex

Abstract

The paper presents strength examination for premolar dental crowns reconstructed with glass fibre dowels in terms of normal occlusal loadings. For comparison, strength examination of fillings retention was also done for crown reconstructions without dowels as well as for the so-called healthy teeth. The analyses of the results have shown a good quality of fillings reconstructed using the glass fibre technique and proved their durability and high strength properties.

Go to article

Authors and Affiliations

Grzegorz Milewski
Maciej Żarow
Marcin Klaus
Download PDF Download RIS Download Bibtex

Abstract

The present work investigates the effect of modifying an epoxy resin using two different modifiers. The mechanical and thermal properties were evaluated as a function of modifier type and content. The structure and morphology were also analyzed and related to the measured properties. Polyurethane (PUR) was used as a liquid modifier, while Cloisite Na+ and Nanomer I.28E are solid nanoparticles. Impact strength (IS) of hybrid nanocomposites based on 3.5 wt% PUR and 2 wt% Cloisite or 3.5 wt% PUR and 1 wt% Nanomer was maximally increased by 55% and 30%, respectively, as compared to the virgin epoxy matrix, exceeding that of the two epoxy/nanoparticle binaries but not that of the epoxy/PUR binary. Furthermore, a maximum increase in IS of approximately 20% as compared to the pristine matrix was obtained with the hybrid epoxy nanocomposite containing 0.5 wt% Cloisite and 1 wt% Nanomer, including a synergistic effect, due most likely to specific interactions between the nanoparticles and the epoxy matrix. The addition of polyurethane and nanoclays increased the thermal stability of epoxy composites significantly. However, DSC results showed that the addition of flexible polyurethane chains decreased the glass transition temperatures, while the softening point and the service temperature range of epoxy nanocomposites containing nanofillers were increased. FTIR analysis confirmed the occurrence of interaction between the epoxy matrix and added modifiers. All SEM micrographs showed significant roughness of the fracture surfaces with the formation of elongated platelets, explaining the increase in mechanical properties of the epoxy matrix.
Go to article

Authors and Affiliations

Anita Białkowska
1
Patryk Suroń
1
Wojciech Kucharczyk
1
Barbora Hanulikova
2
Mohamed Bakar
3
ORCID: ORCID

  1. Casimir Pulaski University of Radom, Poland
  2. Tomas Bata University in Zlin, Czech Republic
  3. Independent Researcher
Download PDF Download RIS Download Bibtex

Abstract

In this study, a hybrid surface composite of AA5083/SiC-Gr was produced by Friction Stir Processing (FSP). Reinforcement material each in 50:50 proportion was filled in the base matrix using holes method. Three different hybrid reinforcement volumes of 301.6 mm 3, 452.4 mm 3, and 603.2 mm 3 were prepared for surface composite. Optical and Scanning Electron Microscopy was used to check the quality of the prepared surface composite and homogeneous distribution of reinforcement was observed in the images. It was observed that due to better uniform distribution of reinforcement particles during 3 pass FSP, specimens with 301.6 mm 3/ reinforcement volume showed enhanced microhardness and wear properties in comparison with the other specimens. Keywords: Surface Composites; Multi-pass; Friction Stir Processing; Reinforcement; Hybrid Composite
Go to article

Authors and Affiliations

Shalok Bharti
1 2
ORCID: ORCID
Nilesh D. Ghetiya
1
ORCID: ORCID
Kaushik M. Patel
1
ORCID: ORCID
Kuldeep K. Saxena
3
ORCID: ORCID

  1. Nirma University, Institute of Technology, Department of Mechanical, Engineering, Ahmedabad, Gujarat – 382481 – India
  2. CT University, Department of Mechanical Engineering, Ludhiana, Punjab – 142024 – India
  3. Division of Research and Development, Lovely Professional University, Jalandhar, Punjab – 144001 – India
Download PDF Download RIS Download Bibtex

Abstract

A characteristic study on the phenol formaldehyde (PF) composite is carried out based on the micro level bio waste particles such as wood sawdust (WSD) and coir pith (CP). Composite is characterized by mechanical properties such as tensile, flexural and impact at different percentages of particles (0-50% by weight) to find out the optimum percentage of particle loading to get the maximum properties. The WSD/CP/PF hybrid composite is also prepared by two different methods i.e., one: one (1:1) ratio and rule of mixture. The first method (1:1) is used to find out the optimum level of hybrid particles loading to get the maximum properties. But, the second method is followed to find out the weight percentages of particles influencing the properties of resulting composite. The results show that the mechanical properties of WSD/PF are higher than CP/PF composite in the entire particle loading. The optimum particle loading to get the maximum properties is 40 wt.% in CP/PF composite, whereas for WSD/PF composite are at 30 wt.%. The hybrid composite (1:1) also gives the maximum properties at 30 wt.%. Moreover, the hybrid composite (20WSD/10CP) prepared by rule of mixture showed the highest mechanical properties compared to the other particle loading. It is identified that the WSD particles are most influencing the properties of PF composites than the CP particles. Fractographic study was performed using scanning electron microscope to examine the failure mechanism of the composite specimens.
Go to article

Authors and Affiliations

A. Sujin Jose
1
ORCID: ORCID
A. Athijayamani
2
ORCID: ORCID
S.P. Jani
3
ORCID: ORCID
V. Mago Stalany
4
ORCID: ORCID
M. Adam Khan
5
ORCID: ORCID

  1. Automobile Engineering, New Horizon College of Engineering, Bengaluru, India
  2. Mechanical, Government College of Engineering, Bodi, Tamil Nadu, India
  3. Department of Mechanical Engineering, Marri Laxman Reddy Institute of Technology and Management, Hyderabad – 500043, India
  4. Mechanical, Lourdes Mount College of Engineering & Technology, Marthandam, Ta milnadu, India5
  5. School of Automotive and Mechanical Engineering, Kalasalingam Academy of Research & Education, Virudhunagar Dist., Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the mechanical properties and high-temperature sliding wear behaviour of the Al6082-SiC-TiO2 hybrid composite in different environmental conditions produced by the stir-casting process were investigated and distinguished with single-reinforced composites (Al6082-SiC and Al6082-TiO2) and matrix alloy. The microstructure of composites exhibited a reasonably uniform scatter of particles in the aluminium matrix with good bonding between the matrix-particle interfaces. The hybrid composite’s hardness and ultimate tensile strength showed higher hardness and tensile strength than matrix alloy and single-reinforced composites, whereas trends were reversed for the elongation. The impact test of the materials was conducted at different temperatures (room temperature, 0°C, –25°C, –50°C, and –75°C). The hybrid composite shows higher impact strength than the other materials, and impact strength decreases with temperature because ductility decreases with temperature. The fracture surfaces were examined to identify the fracture mechanism. The sliding wear test was conducted at different temperatures (room temperature, 100°C, 175°C, 250°C and 325°C) to distinguish the tribological behaviour of materials. The weight loss of the materials was increased with an increase in temperatures. The hybrid composite shows a lower weight loss than the other condition samples, irrespective of the temperatures. The wear surfaces were examined to predict the material removal mechanism.
Go to article

Authors and Affiliations

Pushpraj Singh
1
ORCID: ORCID
Raj Kumar Singh
2 3
ORCID: ORCID
Anil Kumar Das
1
ORCID: ORCID

  1. National Institute of Technology, Department of Mechanical Engineering, Ashok Rajpath, Mahendru, Patna, Bihar, 800005, India
  2. University Road, Department of Mechanical Engineering, Rewa Engineering College, Rewa, Madhya Pradesh, 486002, India
  3. Vindya Institute of Technology and Science, Mechanical Engineering, Amaudha Kalan, SATNA, MADHYA PRADESH, 485001, India

This page uses 'cookies'. Learn more