Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Parameters of the moulding process in foundry are usually determined by trial-and-error method, and this way contributes to time taken and adds further cost for production sand. The present work represents an attempt to optimize sand moulding parameters in terms of compactability, compaction time, and air pressure, and to study effect of these factors on the green sand flowability using L4 design of experiments. Regression model, Taguchi method, and experimental verification were used to investigate flow property of sodium bentonite- bonded BP-quartz sand for sand moulding.
Analysis of variance (ANOVA) was employed to measure significance and contributions of different moulding variables on flowability of green sand. The values obtained showed that the compaction time factor significantly affected flowability of green sand while compactability and air pressure have slight effects. The comparison results of Taguchi method, regression predictions and experiments exhibited good agreement.
Go to article

Bibliography


[1] Rao, T.V. (2003). Metal casting: principles and practice. New Delhi: New Age International.

[2] Bownes, F.F. (1971). Sand Casting. In Beadle, J.D. (Eds.) Castings: Production Engineering Series (pp. 63-74). Palgrave, London: Red Globe Press London. https://doi.org/10.1007/978-1-349-01179-7_7.

[3] Saikaew, C. & Wiengwiset, S. (2012). Optimization of moulding sand composition for quality improvement of iron castings. Applied Clay Science. 67-68, 26-31. https://doi.org/10.1016/j.clay.2012.07.005.

[4] Karunakar D.B. & Datta, G.L, (2007). Controlling green sand mold properties using artificial neural networks and genetic algorithms- A comparison. Applied Clay Science. 37(1-2), 58-66. https://doi.org/10.1016/j.clay.2006.11.005.

[5] Abdulamer, D. & Kadauw, A. (2019). Development of mathematical relationships for calculating material-dependent flowability of green molding sand. Journal of Materials Engineering and Performance, 28, 3994-4001. https://doi.org/10.1007/s11665-019-04089-w.

[6] Abdulamer, D. (2023). Study on the impact of moulding parameters on the flow property of green sand mould, Canadian Metallurgical Quarterly. 1-7. DOI: 10.1080/00084433.2023.2287797.

[7] Baitiang, C., Weiß, K., Krüger, M. et al, (2023). Data-driven process analysis for iron foundries with automatic sand molding process. International Journal of Metalcasting.18, 1135-1150. https://doi.org/10.1007/s40962-023-01080-z.18

[8] Abdulamer, D. (2023). Utilizing of the statistical analysis for evaluation of the properties of green sand mould. Archives of Foundry Engineering. 23(3), 67-73. DOI: 10.24425/afe.2023.146664.

[9] Mahesh B. Parappagoudar, Dilip Kumar Pratihar, and Gouranga Lal Datta, (2011). Modeling and analysis of sodium silicate-bonded moulding sand system using design of experiments and response surface methodology. Journal for Manufacturing Science & Production. 11(1-3), 1-14, https://doi.org/10.1515/jmsp.2011.011.

[10] Sultana, M.N., Rafiquzzaman M. & Al Amin, M. (2017). Experimental and analytical investigation of the effect of additives on green sand mold properties using taguchi method. International Journal of Mechanical Engineering and Automation. 4(4), 109-119.

[11] Gunasegaram, D.R., Farnsworth D.J. & Nguyen, T.T. (2009). Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments. Journal of materials processing technology. 209(3), 1209-1219. https://doi.org/10.1016/j.jmatprotec.2008.03.044.

[12] Patel, M.G.C., Parappagoudar, M.B., Chate, G.R. & Deshpande, A.S. (2017). Modeling and optimization of phenol formaldehyde resin sand mould system. Archives of Foundry Engineering. 17(2), 162-170. DOI: 10.1515/afe-2017-0069.

[13] Ishfaq, K., Ali, M. A., Ahmad, N., Zahoor, S., Al-Ahmari, A. M. & Hafeez, F. (2020). Modelling the mechanical attributes (roughness, strength, and hardness) of al-alloy A356 during sand casting. Materials. 13(3), 598, 1-24. DOI: 10.3390/ma13030598.

[14] Guharaja, G., Noorul Haq A. & Karuppannan, K.M. (2006). Optimization of green sand casting process parameters by using Taguchi’s method. International Journal of Advance Manufacturing Technology. 30, 1040-1048. https://doi.org/10.1007/s00170-005-0146-2.

[15] Khare, M., Kumar, D. (2012). Optimization of sand casting parameters using factorial design. International Journal of Scientific Research. 3(1), 151-153.

[16] Reddy, K.S., Reddy, V.V., Mandava, R.K. (2017). Effect of binder and mold parameters on collapsibility and surface finish of gray cast iron no-bake sand molds. IOP Conference Series: Material Science and Engineering. 225 012246. DOI 10.1088/1757-899X/225/1/012246.

[17] Abdulamer, D. (2023). Impact of the different moulding parameters on properties of the green sand mould. Archives of Foundry Engineering. 23(2), 5-9. DOI: 10.24425/afe.2023.144288.

[18] Dabade, U.A. & Bhedasgaonkar, R.C. (2013). Casting defect analysis using design of experiments (DoE) and computer aided casting simulation technique. Procedia CIRP. 7, 616-621. https://doi.org/10.1016/j.procir.2013.06.042.

[19] Lakshamanan Singaram, (2010). Improving quality of sand casting using taguchi and ANN analysis. International journal on design and manufacturing technologies. 4, 1-5.

[20] Kumari, A., Ohdar, R., Banka, H. (2016). Multiobjective parametric optimization of green sand moulding properties using genetic algorithm. In 3rd International Conference on Recent Advances in Information Technology RAIT, 03-05. March 2016 (pp. 279-283). Dhanbad, India: IEEE. DOI: 10.1109/RAIT.2016.7507916.

[21] Charnnarong Saikaew, & Sermsak Wiengwiset, (2012). Optimization of molding sand composition for quality improvement of iron castings. Applied Clay Science. 67-68, 26-31. DOI: 10.1016/j.clay.2012.07.005.

Go to article

Authors and Affiliations

Dheya Abdulamer
1
ORCID: ORCID
Ali A. Muhsan
1
ORCID: ORCID
Sinan S. Hamdi
1
ORCID: ORCID

  1. University of Technology- Iraq

This page uses 'cookies'. Learn more