Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study is to investigate a structure’s response to blast loading when composite columns are used instead of conventional reinforced concrete (RC) cross sections and when a conventional structure is retrofitted with braces. The study includes conducting dynamic analyses on three different structures: a conventional reference RC structure, a modified structure utilizing composite columns, and a modified structure retrofitted with steel braces. The two modified structures were designed in order to investigate their performance when subjected to blast loading compared to the conventional design. During the dynamic analyses, the structures were exposed to simulated blast loads of multiple intensities using the finite-element modelling software, SeismoStruct. To evaluate their performance, the responses of the modified structures were analyzed and compared with the response of the conventional structure. It was concluded that both the structure with composite columns and the steel brace structure experienced less damage than the conventional model. The best performance was obtained through the steel brace structure.

Go to article

Authors and Affiliations

Y.E. Ibrahim
M. Almustafa
Download PDF Download RIS Download Bibtex

Abstract

With the development of building seismic isolation technology and the official release of the Isolation Code in September 2021, seismic isolation design in China will now rely on two foundational codes: the Seismic Code and the Isolation Code. This paper take a ceramic jar storage of the RC frame structure as the research object, and carry out the seismic isolation design based on the separated calculation design method of the Seismic Code and the unitary calculation design method of the Isolation Code respectively, and clarify the control index of the Isolation Code is the story drift angle. The maximum displacement is reduced by 37.5%. In terms of material consumption, the Isolation Code leads to a 5.94% decrease in concrete usage, accompanied by a 13.97% increase in steel consumption, resulting in an overall cost increase of 4.98%. The findings indicate that seismic isolation design, guided by the Isolation Code, substantially mitigates the seismic response of the superstructure. The damage extent to structural members is reduced by 15–20%, promoting enhanced safety and repairability. The outcomes of this study offer valuable insights for future seismic isolation designs in RC frame structures.
Go to article

Authors and Affiliations

Junyi Zhang
1
ORCID: ORCID
Jiawei Li
1
ORCID: ORCID
Zhiqiang Zhang
1
ORCID: ORCID

  1. College of Civil Engineering, Southeast University, Nanjing 211189, China
Download PDF Download RIS Download Bibtex

Abstract

Advancements in technology and material sciences lead new solutions to be used in civil engineering. PolyUrethane Flexible Joints (PUFJ) and Fiber Reinforced PolyUrethanes (FRPU) are among those innovative solutions. PUFJ implemented systems comprise of seismic preventive buffer material between masonry infill walls and reinforced concrete (RC) frames, whereas FRPU solution is designed for covering the wall surfaces with thin composite strips. Both methods are primarily developed for increasing the ductility capacities of buildings while sustaining the overall structural strength without compromising on the safety of these systems against earthquakes. In this article, test results of the quasi-static cyclic experiments as well as dynamic tests on the shake tables including harmonic forces operating in resonance are presented. Moreover, numerical analyses are performed in order to comprehend the behavior of PUFJ implemented frames constituted with different masonry materials than above which are under various loading conditions. The outcomes confirmed the high efficiency of the proposed solutions, which at the same time meet the strict requirements of the modern seismic standards.
Go to article

Authors and Affiliations

Arkadiusz Kwiecień
1
ORCID: ORCID
Ahmet Tugrul Akyildiz
1

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24,31-155 Cracow, Poland

This page uses 'cookies'. Learn more