Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The investigation of the couple stress fluid flow behaviour between two parallel plates under sudden stoppage of the pressure gradient is considered. Initially, a flow of couple stress fluid is developed between the two parallel plates under a constant pressure gradient. Suddenly, the applied pressure gradient is stopped, and the resulting unsteady flow is studied. This type of flow is known as run-up flow in the literature. Now the flow is expected to come to rest in a long time. Usually, these types of problems are solved by using the Laplace transform technique. There are difficulties in obtaining the inverse Laplace transform; hence, many researchers adopt numerical inversions of Laplace transforms. In this paper, the problem is solved by using the separation of variables method. This method is easier than the transform method. The velocity field is analyti-cally obtained by applying the usual no-slip condition and hyper-stick conditions on the plates, and hence the volumetric flow rate is derived at subsequent times. The steady state solution before the withdrawal of the pressure gradient is matched with the initial condition on time. The rest time, i.e. the time taken by the fluid to come to rest after the pressure gradient is withdrawn is calculated. The graphs for the velocity field at different times and different couple stress parameters are drawn. In the special case when a couple stress parameter approaches infinity, couple stress fluid becomes a viscous fluid. Our results are in good agreement with this special case.
Go to article

Authors and Affiliations

Donga Anjali
1
Naresh Reddimalla
1
Josyula Venkata Ramana Murthy
1

  1. Department of Mathematics, National Institute of Technology Warangal, Telangana 506004, India
Download PDF Download RIS Download Bibtex

Abstract

This study is concerned with liquid flow induced by a disk which rotates steadily around its axis and touches the free surface of liquid contained in a cylindrical vessel. It is a simplified model of the flow in the inlet part of a vertical cooling crystallizer where a rotary distributor of inflowing solution is situated above the free surface of solution contained in the crystalliser. Numerical simulations of flow phenomena were conducted and the simulation results were interpreted assuming an analogy with Kármán’s theoretical equations. In a cylindrical coordinate system, the components of flow velocity were identified as functions of distance from the surface of the rotating disk. The experimental setup was developed to measure velocity fields, using digital particle velocimetry and optical flow. Conclusions concerning the influence of disc rotation on liquid velocity fields were presented and the experimental results were found to confirm the results of numerical simulation. On the basis of simulation data, an approximation function was determined to describe the relationship between the circumferential component of flow velocity and the distance from the disk.

Go to article

Authors and Affiliations

Witold Suchecki

This page uses 'cookies'. Learn more