Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article investigates the issue of beam misalignment in continuous curved beam bridges. Taking the D0–D6 spans of the Gongbin Road elevated bridge as a basis, real-time monitoring of the stress and displacement of the beams is carried out during the jacking and shifting construction process. At the same time, the reaction forces of each support are monitored. The jacking force of the hydraulic jacks is controlled to ensure the stability and safety of the beam during the construction process. Finally, the jacking and shifting monitoring data is organized and compared with theoretical values. It is found that the stress values generated during the jacking phase of the bridge are below the stress control standard. No uplift phenomenon occurs at the supports, and the jacking height is controlled within a reasonable range. The construction process does not cause damage to the beams, and it is safe and reliable. During the shifting construction, the whole bridge was displaced using the jacking method, and the three working conditions were monitored throughout the process. The stress increment at the 2# and 4# sections was relatively small, and the measured stress increments for the entire bridge were all below the stress control standard. The displacement of the bridge abutment during the jacking process was minimal, with no contact with the abutment blocks, and no significant elastic deformation occurred. The jacking displacement was successfully achieved.
Go to article

Authors and Affiliations

Xilong Zheng
1
ORCID: ORCID

  1. Harbin University, School of Civil and Architectural Engineering, No.109 Zhongxing Da Dao, Harbin,China
Download PDF Download RIS Download Bibtex

Abstract

As the spherical hinge in the bridge swivel structure bears huge vertical pressure, the material and its structural load-bearing capacity are therefore highly-required. In the latest research, the ultrahigh performance concrete material is applied to the spherical hinge structure and the author of this article has conducted a detailed study on the mechanical properties and failure mechanism of this structure; however, there is still no real bridge application at present. In order to ensure the stability of the structure, based on an actual project, this research proposes a monitoring method for the stability of the UHPC spherical hinge horizontal rotation system, i.e., using theoretical calculations and numerical analysis methods. Besides, the mechanical characteristics of the bridge during the process of rotation are predicted, and the monitoring data of the stress of the UHPC spherical hinge, the bending moment of the pier bottom, as well as the acceleration time history of the cantilever beam end are made a comparison to judge whether the rotating posture of the structure is stable. The results show that UHPC spherical hinge features high strength and will not cause axial damage; also, the horizontal rotation system will not cause the unstability due to wind-induced vibration and structural self-excited vibration. Briefly concluded, the theoretical model is basically consistent with the measured data, i.e., the mechanical properties of the structure can be accurately predicted.
Go to article

Authors and Affiliations

Jiawei Wang
1
ORCID: ORCID
Bing Cao
1
ORCID: ORCID
Bo Huang
1
ORCID: ORCID

  1. Anhui Polytechnic University, School of Architecture and Civil Engineering, Wuhu City, Beijing Middle Road, China

This page uses 'cookies'. Learn more