Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the problem of beam deflection in curved continuous beam bridges. Taking the D0–D6 spans of the Gongbin Road viaduct as a basis, the main factors influencing the deflection of curved beam bridges are analyzed. The Midas/Civil finite element simulation software is used to calculate and analyze the causes of transverse and longitudinal deflection in curved beam bridges. The results show that the main influencing factor for beam deflection during operation is the system temperature, which causes a displacement greater than the combined displacement caused by self-weight, construction stage, gradient load, vehicle load, and bearing settlement. Damages to expansion joints during operation change the boundary conditions of the beam, preventing longitudinal free expansion under temperature load, and increasing the transverse displacement to 2–3 times the normal working state of the expansion joint, resulting in beam deflection. In the design phase, the selection of curvature radius and fixed support displacement is also a major factor affecting deflection. The smaller the curvature radius, the greater the influence on transverse and longitudinal deflection of the beam. However, when the curvature radius R is greater than 400 m, the impact on beam deflection can be neglected. The closer the fixed support position is to the ends of the bridge, the higher the possibility of bearing detachment, ultimately leading to beam deflection.
Go to article

Authors and Affiliations

Xilong Zheng
1
ORCID: ORCID
Di Guan
1
ORCID: ORCID

  1. Harbin University, School of Civil and Architectural Engineering, No.109 Zhongxing Da Dao, Harbin,China
Download PDF Download RIS Download Bibtex

Abstract

This article investigates the issue of beam misalignment in continuous curved beam bridges. Taking the D0–D6 spans of the Gongbin Road elevated bridge as a basis, real-time monitoring of the stress and displacement of the beams is carried out during the jacking and shifting construction process. At the same time, the reaction forces of each support are monitored. The jacking force of the hydraulic jacks is controlled to ensure the stability and safety of the beam during the construction process. Finally, the jacking and shifting monitoring data is organized and compared with theoretical values. It is found that the stress values generated during the jacking phase of the bridge are below the stress control standard. No uplift phenomenon occurs at the supports, and the jacking height is controlled within a reasonable range. The construction process does not cause damage to the beams, and it is safe and reliable. During the shifting construction, the whole bridge was displaced using the jacking method, and the three working conditions were monitored throughout the process. The stress increment at the 2# and 4# sections was relatively small, and the measured stress increments for the entire bridge were all below the stress control standard. The displacement of the bridge abutment during the jacking process was minimal, with no contact with the abutment blocks, and no significant elastic deformation occurred. The jacking displacement was successfully achieved.
Go to article

Authors and Affiliations

Xilong Zheng
1
ORCID: ORCID

  1. Harbin University, School of Civil and Architectural Engineering, No.109 Zhongxing Da Dao, Harbin,China

This page uses 'cookies'. Learn more