Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the numerical simulation of a pilot-scale axial cyclone separator. The main purpose of this paper is to develop a numerical model that is able to foresee the cyclone separator cut-off point. This is crucial in blast furnace gas installation to capture large particles containing carbon and iron, while allowing smaller particles such as zinc and lead to pass through. The cut-off point must be designed to give a sufficiently high zinc and lead content in the sludge created after the second cleaning stage. This allows the sludge to become a commercial product. To design this cut-off point, an investigation of the influence of inlet gas velocity, temperature, and the angle of guiding vanes at the inlet was done. The developed CFD model was validated against experimental data on the fractional efficiency of the cyclone separator. The results were in good agreement with the experimental data for all parameters tested. The behavior of the particles inside the cyclone was also physically correct.
Go to article

Authors and Affiliations

Arkadiusz Ryfa
1
Mieszko Tokarski
2
Wojciech Adamczyk
1
Adam Klimanek
1
Paweł Bargiel
1
Ryszard Białecki
1
Michał Kocot
3
Harald Kania
4
Janusz Stecko
4
Marianna Czaplicka
5
ORCID: ORCID

  1. Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
  2. Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland; AGH University of Science and Technology, Department of Fuels Technology, Czarnowiejska 30, 30-059, Kraków, Poland
  3. ArcelorMittal Poland, al. Piłsudskiego 92, 41-308 Dąbrowa Górnicza, PolandNiesler, Marian : Institute for Ferrous Metallurgy, Łukasiewicz Research Network, Karola Miarki 12, 44-100 Gliwice, Poland
  4. Institute for Ferrous Metallurgy, Łukasiewicz Research Network, Karola Miarki 12, 44-100 Gliwice, Poland
  5. Institute of Environmental Engineering, Polish Academy of Sciences, Marii Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

A comparative analysis of filtration performance of tangential and axial inlet reverse-flow cyclone separators and vortex tube separators is presented. The study showed that vortex tube separators are characterized by a quality factor q several time higher than tangential inlet reverse-flow cyclone separators. The cyclone separators yield low separation efficiency and low filtration performance at low air flow rates at low air volumes aspired by the engine at low speed. One of the well-known and not commonly used methods to improve separation efficiency is to apply electric field. An original design of a vortex tube separator with insulators generating electric field in the area of aerosol flow is presented. High voltage was applied to the cyclone separator housing and its swirl vane. A special method and test conditions were developed for cyclone separators with electric field. Separation efficiency, filtration performance and pressure drop across the cyclone separator in two different variants were determined. The tests were carried out at five inlet velocity of cyclones υ0  = 1.75; 3.5; 7.0; 10.5; 14 m/s at an extraction rate of m0  = 10%, and at an average dust concentration in the inlet air of
s = 1 g/m3. Using the electric field in the area of a swirling aerosol stream resulted in an increase (over 12% – φc  = 96.3%) in separation efficiency at inlet velocity of cyclone ranging from 1.75 to 3.5 m/s. An increase in separation efficiency at other inlet velocity of cyclone is minor and does not exceed 3‒4%.

Go to article

Authors and Affiliations

T. Dziubak

This page uses 'cookies'. Learn more