Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

For some industries such as automotive, defence, aerospace, pharmaceutical manufacturing, dynamic pressure measurement is an important requirement. In a primary level dynamic pressure measurement system with a drop weight method, the dynamic pressure value is calculated using parameters such as the effective area value depending on the piston cylinder unit, the maximum acceleration value measured by a laser interferometer. On the other hand, the type of liquid used in the measuring head is another important factor affecting repeatability and providing ease of measurement. In this study, a new measurement head, piston and cylinders were designed, manufactured and the Taguchi method was used to accurately determine some parameters affecting the measurements in a dynamic primary pressure measurement system operating with the drop weight method. In the studies carried out, four pistons, four cylinders, four sampling frequency values and two liquid types were considered. By using the Taguchi method, the optimum parameters of the dynamic pressure measurement system with drop weight method were determined with only sixteen experiments instead of one hundred and twenty-eight.
Go to article

Authors and Affiliations

Recep Yılmaz
1
Hüseyin Arıkan
2
Yasin Durgut
1
Abdullah Hamarat
1

  1. TÜBITAK National Metrology Institute, TÜBITAK Gebze Yerleskesi P.K.54, 41470 Gebze, Kocaeli, Türkiye
  2. Necmettin Erbakan University, Faculty of Engineering, Institute of Natural and Applied Science, Yeni Meram Boulevard Kasım Halife Street 11, 42090 Meram, Konya, Türkiye
Download PDF Download RIS Download Bibtex

Abstract

The conduction of mining activity under the conditions of rock bursts and rock mass tremors means that designers often utilise support systems comprising various configurations of steel arch, rock bolt and surface support. Particularly difficult geological and mining conditions, when wire mesh does not provide sufficient dynamic resistance, it requires an additional reinforcement with wire rope lacing in the form of steel ropes installed between the bolt ends and fixed to them by means of various rope clamps (e.g. u-bolt clamps). Bench tests were conducted to compare the strength of wire ropes under static and dynamic loading. The tests involved wire ropes with an internal diameter of Ø15.7 mm. Tests under static loading demonstrated that the cable bolts transferred a maximum force Fs max = 289.0 kN without failure, while the energy absorbed until failure was E 1s = 16.6 kJ. A comparative test result analysis for the wire ropes used in the bolt designs revealed that the influence of dynamic loading forces has a significant effect on reducing the rope load capacity, which results in the brittle cracking of the wires in the rope. Although the average dynamic force leading to wire rope failure F dmax = 279.1 kN is comparable to the minimum static force Fmin = 279 kN defined in the relevant standard, the average energy E1d absorbed by the cable bolt until failure is 48% lower than the energy E1s determined for wire rope failure under static loading. Furthermore, cable bolt failure under dynamic loading occurred at an impact velocity of the combined ram and crosshead masses ranging within vp = 1.4-1.5 m/s.
Go to article

Authors and Affiliations

Andrzej Pytlik
1
Mariusz Szot
1
ORCID: ORCID

  1. GIG – National Research Institute, Plac Gwarków 1, 40-166 Katowice, Poland

This page uses 'cookies'. Learn more