Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The effects of the miniature channel-shaped scratches not detectable by the present inline electromagnetic defect detection system employed for wires’ surface defect detection on the fracture behaviour of the wires for civil engineering applications were investigated numerically. Finite element analysis revealed that both miniature channel-shaped across-the-thickness and across-the-width scratches change the fracture behaviour of the wires in terms of the fracture initiation locations and fracture process sequence. However, miniature across-the-thickness scratches does not affect the fracture shape of the wire while miniature across-the-width scratches changed the wires’ cup and cone fracture to a fracture shape with a predominantly flat fracture. These results provide an understanding of the fracture behaviour of wires with miniature scratches and serve as an alternative or a complimentary tools to experimental or fractographic failure analysis of wires with miniatures scratches which are difficult to carry out in the laboratory due to the sizes of the scratches.

Go to article

Authors and Affiliations

K.K. Adewole
S.J. Bull
Download PDF Download RIS Download Bibtex

Abstract

The study aims to analyse the dynamic buckling phenomenon and assess the role of the stress tensor components in the failure process of a short Fiber Metal Laminate column under axial compressive dynamic loading. The investigation is focused on a channel-section profile composed of three aluminium layers and two doubled composite plies [Al/0/90/Al/90/0/Al]. The numerical analysis was performed on the finite element model, which was validated by experimental static buckling tests. Employing a progressive failure algorithm, this analysis incorporated the material property degradation method and Hashin’s criterion as the damage initiation criterion. Failure initiation in metal layers was based on the HuberMises-Hencky failure criterion. Based on the conducted analyses, it was concluded that the dominant forms of destruction in the FML structure are yielding in the metal layers due to excessive compressive stresses and the failure of the matrix in composite plies as a result of compressive and shear stresses. Through a thorough examination of the stress tensor components, critical stresses contributing to aluminum plastic deformation and laminate failure mechanisms were identified.
Go to article

Authors and Affiliations

Monika Zaczynska
Download PDF Download RIS Download Bibtex

Abstract

Tensile strength of aluminum castings has been improved by employing surge and filter in a conventional non-pressurizing gating system. For this purpose, three non-pressurizing bottom-gating systems were designed where the first design was a simple design with no filter and no surge, in the second design filter and in the third one surge was added to the end of runner. Tensile strength, Weibull module, scanning electron microscopy, chemical analysis, and melt pattern during the mold filling were thoroughly analyzed to compare these three designs. It was observed that employing filter and surge in the gating system reduces flow kinetic energy and consequently avoid surface turbulence and air entrainment, which leads to castings with fewer defects and higher reliabilities. Finally, it found that appropriate use of surge in the running system can be as effective as employing a filter in reducing melt front velocity.
Go to article

Authors and Affiliations

Amir Baghani
1
Ali Kheirabi
2
Ahmad Bahmani
3
Hamid Khalilpour
4

  1. University of Iowa Department of Mechanical Engineering, Iowa City, IA, USA
  2. Iran University of Science and Technology School of Metallurgy and Materials Engineering, Tehran, Iran
  3. University of Tehran Department of Metallurgical and Materials Engineering, Iran
  4. Laval University, Department of Mining, Metallurgical and Materials Engineering, Québec, Canada

This page uses 'cookies'. Learn more