Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Fuel tanks are designed with regard to standard loads and operating conditions. The investigations of the paper show the impact of such factors as tank corrosion and other means on variation of stress fields and deformation of the underground horizontal tank shell. Introduction of probabilistic methods allows for structural reliability assessment. While the computational time of the entire tank FEM model is high the preliminary analysis is restricted to structural part only. The analysis makes it possible to optimize the structure with regard to construction costs.
Go to article

Authors and Affiliations

Przemysław Sorn
1 2
Mateusz Sondej
1
Jarosław Górski
1
ORCID: ORCID

  1. Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
  2. KB Pomorze, Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of the article involves presenting innovative approach to the assessment of structural reliability analysis. The primary research method was the First Order Reliability Method (FORM). The Hasofer–Lind reliability index in conjunction with transformation method in the FORM was adopted as the reliability measure. The implicit limit state functions were used in the analysis. The formulation of the random variables functions were created in the Matlab software by means of neural networks (NNs). The reliability analysis was conducted in Comrel module of Strurel computing environment. In the proposed approach, Hybrid FORM method (HF) used the concept in which NNs replaced the polynomial limit state functions obtained from FEM (Finite Elements Method) for chosen limit parameters of structure work. The module Comrel referenced Matlab files containing limit state functions. In the reliability analysis of structure, uncertain and uncorrelated parameters, such us base wind speed, characteristic snow load, elasticity modulus for steel and yield point steel are represented by random variables. The criterion of structural failure was expressed by four limit state functions – two related to the ultimate limit state and two related to the serviceability limit state. Using module Comrel values of the reliability index with the FORM method were determined. Additionally, the sensitivity of the reliability index to random variables and graph of partial safety factors were described. Replacing the FEM program by NNs significantly reduces the time needed to solve the task. Moreover, it enables the parallel formulation of many limit functions without extending the computation time.
Go to article

Authors and Affiliations

Beata Potrzeszcz-Sut
1
ORCID: ORCID
Agnieszka Dudzik
1
ORCID: ORCID
Urszula Radoń
1
ORCID: ORCID

  1. Kielce University of Technology, Faculty of Civil Engineering and Architecture, al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper focuses on the system reliability of steel trusses with correlated variables. The correlation between bearing capacities of bars was considered. Two static truss schemes were considered. Nodal forces were the only load. The Finite Element Method analysis was conducted in Robot Structural Analysis program. To conduct system reliability analysis it is essential to find cut-sets, it was realized by stiffness matrix spectral analysis. Then reliability analysis was performed in Sysrel module of Strurel computing environment. First Order Reliability Method was used as the base, Subset Simulation method was used to check the correctness of the results. The sensitivity analysis of reliability index enabled the authors to draw conclusions, which variables have the greatest influence on the reliability of the structure. The effects of actions and bearing capacities were assumed to be the only random variables and that the excessing the bearing capacities of bars is the only way the structure can get into failure area.
Go to article

Authors and Affiliations

Katarzyna Kubicka
1
ORCID: ORCID
Urszula Radon
1
ORCID: ORCID

  1. Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. 1000-lecia PanstwaPolskiego 7, 25-314 Kielce, Poland

This page uses 'cookies'. Learn more