Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Liquid storage tank is widely used in the petrochemical industry, earthquake will lead to structural damage and secondary disasters, and damping control opens up a new way for seismic design of liquid storage tank. Considering soil-structure-fluid interaction, liquid sloshing dynamic behavior and material nonlinearity, a three-dimensional calculation model of shock absorption liquid storage tank is established by combining sliding isolation and displacement-limiting devices. The dynamic responses of the liquid storage tanks under the action of Kobe and El-Centro waves are investigated, and the influence of soil-structure interaction (SSI) on the dynamic response is discussed. The results show that the damping ratio is basically between 30% and 90%. After the SSI is considered, the damping ratio of liquid sloshing wave height is increased, while the damping ratio of the dynamic response of the liquid storage tank is decreased, and the change of elastic modulus has little effect on the damping effect. The sliding isolation with displacement-limiting devices has significant damping control effects on the liquid sloshing wave height and the dynamic responses of the liquid storage tank.
Przejdź do artykułu

Autorzy i Afiliacje

Wei Jing
1
ORCID: ORCID
Shuang Tian
1
ORCID: ORCID

  1. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China

Abstrakt

The prefabricated concrete frame structure system has advantages such as short construction period and good seismic performance, but its deformation and energy dissipation capacity are poor under earthquake action, making it prone to damage. By improving the analysis and simulation functions of existing finite element analysis for prefabricated structures, the engineering applicability of the analysis algorithm has been improved. Then, a finite element model has been established for collaborative optimization, and a parameterized optimization scheme that meets the seismic reduction requirements has been obtained. The results show that the optimization method proposed in the study has a better effect in seeking the minimum cost, and meets the design requirements of the specification. The optimization scheme of prefabricated concrete frames designed by the research institute based on finite element analysis can efficiently optimize various parameters, greatly improving the structure energy dissipation and seismic performance.
Przejdź do artykułu

Autorzy i Afiliacje

Zhengjian Li
1
ORCID: ORCID

  1. Department of Civil and Architectural Engineering, Jiaozuo University, Jiaozuo, 454000, China

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji