Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper describes a design process of HALE PW-114 sensor-craft, developed for high altitude (20 km) long endurance (40 h) surveillance missions. Designed as a blended wing (BW) configuration, to be made of metal and composite materials. Wing control surfaces provide longitudinal balance. Fin in the rear fuselage section together with wingtips provide directional stability. Airplane is equipped with retractable landing gear with controlled front leg that allows operations from conventional airfields. According to the initial requirements it is twin engine configuration, typical payload consists of electro-optical/infra-red FLIR, big SAR (synthetic aperture radar) and SATCOM antenna required for the longest range. Tailless architecture was based on both Horten and Northrop design experience. Global Hawk was considered as a reference point – it was assumed that BW design has to possess efficiency, relative payload and other characteristics at least the same or even better than that of Global Hawk. FLIR, SAR and SATCOM containers were optimised for best visibility. All payload systems are put into separate modular containers of easy access and quickly to exchange, so this architecture can be consider as a „modular”. An optimisation process started immediately when the so-called “zero configuration”, called PW-111 was ready. It was designed in the canard configuration. A canard was abandoned in HALE PW-113. Instead, new, larger outer wing was designed with smaller taper ratio. New configuration analysis revealed satisfactory longitudinal stability. Calculations suggested better lateral qualities for negative dihedral. These modifications, leading to aerodynamic improvement, gave HALE PW-114 as a result. The design process was an interdisciplinary approach, and included a selection of thick laminar wing section, aerodynamic optimisation of swept wing, stability analysis, weight balance, structural and flutter analysis, many on-board redundant systems, reliability and maintability analysis, safety improvement, cost and performance optimisation. Presented paper focuses mainly on aerodynamics, wing design, longitudinal control and safety issues. This activity is supported by European Union within V FR, in the area Aeronautics and Space.

Go to article

Authors and Affiliations

Z. Goraj
A. Frydrychewicz
R. Świtkiewicz
B. Hernik
J. Gadomski
T. Goetzendorf-Grabowski
M. Figat
St. Suchodolski
W. Chajec
Download PDF Download RIS Download Bibtex

Abstract

The considerations presented in the paper relate to one of the most intriguing phenomena, which is the development of oil whirls and oil whips in rotors with journal bearings. This effect is sometimes referred to as flutter, as its origin is in some relation to self-exciting vibrations of the system. Despite the fact that the flutter has been an object of investigation in numerous research centres all over the world, its nature has not been sufficiently recognized yet. The present paper delivers a description of particular phases of development of the hydrodynamic instability and proposes diagnostic determinants for this state. The object of investigations also included bearings with hybrid lubrication and siphon pockets in the oil gaps. The answer has been received to the question whether the self-exciting vibrations in rotating machines can be avoided, or reduced by means of additional oil supply having the form of siphon oil.

Go to article

Authors and Affiliations

J. Kiciński
Download PDF Download RIS Download Bibtex

Abstract

Slender systems are mostly studied when Euler’s load or follower load is considered. The use of those types of external loads results in well-known divergence or flutter shape of the characteristic curve. In this study, one takes into account the specific load which allows one to obtain an interesting divergence – pseudo flutter shape of characteristic curves on the external load–vibration frequency plane. The curves can change inclination angle as well as one can observe the change in vibration modes along them. The shape of those curves depends not only on the parameters of the slender system but also on loading heads that induce the specific load. In this study, one considers the slender multimember system in which cracks are present and weaken the host structure. The results of theoretical as well as numerical simulations are focused on the influence of the parameters of the loading heads on vibrations, stability, and loading capacity of the investigated system as well as on the possibility of partial reduction of unwanted crack effect.
Go to article

Authors and Affiliations

Krzysztof Sokół
1
ORCID: ORCID
Krzysztof Kuliński
2

  1. Department of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Czestochowa, Poland
  2. Department of Civil Engineering, Czestochowa University of Technology, Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

A new approach to calculations based on the modal synthesis method is proposed for the evaluation of structural and dry-friction damping effects on self-excited vibrations due to aeroelastic instability in bladed turbine wheels. The method described herein is used to study dry-friction damping of self-excited vibration of an industrial turbine wheel with 66 blades. For evaluating damping effects, the blade couplings are applied to this particular turbine wheel. Therefore, neighbouring blades are interconnected by rigid arms that are fixed on one side to one blade and are in frictional contact on their free side with the other blade. Due to relatively normal motions in contacts, the prescribed contact forces vary over time. The aerodynamic excitation arises from the spatially periodical flow of steam through the stator blade cascade. In this paper, we attempt to model flow-induced instabilities with the Van der Pol model linked to relative motion between neighbouring blades. The proposed modal synthesis method as ROM is a computationally efficient solution allowing substantial parametrization. The effect of the angles of contact surfaces on the wheel dynamics and on the level of the self-excitation suppression will be discussed herein.
Go to article

Authors and Affiliations

Luděk Pešek
1
ORCID: ORCID
Pavel Šnábl
1
Chandra Shekhar Prasad
1

  1. Institute of Thermomechanics of the CAS, v. v. i., Dolejškova 1402/5, 182 00 Praha 8, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The analysis of subsonic stall flutter in turbomachinery blade cascade is carried out using a medium-fidelity reduced-order aeroelastic numerical model. The model is a type of field mesh-free approach and based on a hybrid boundary element method. The medium-fidelity flow solver is developed on the principle of viscous-inviscid two-way weak-coupling approach. The hybrid flow solver is employed to model separated flow and stall flutter in the 3D blade cascade at subsonic speed. The aerodynamic damping coefficient w.r.t. inter blade phase angle in traveling-wave mode is estimated along with other parameters. The same stability parameter is used to analyze the cascade flutter resistance regime. The estimated results are validated against experimental measurements as well as Navier-Stokes based high fidelity CFD model. The simulated results show good agreement with experimental data. Furthermore, the hybrid flow solver has managed to bring down the computational cost significantly as compared to mesh-based CFD models. Therefore, all the prime objectives of the research have been successfully achieved.
Go to article

Bibliography

  1.  “Nuclear power: 2 largest steam turbine ever made,” 2020, (Accessed: 2020-10-06). [Online]. Available: https://www.ge.com/news/reports.
  2.  T. Rice, D. Bell, and G. Singh, “Identification of the stability margin between safe operation and the onset of blade flutter,” J. Turbomach., vol. 131, no. 1, 2009, doi: 10.1115/1.2812339.
  3.  J. Kiciński, “The flutter effect in rotating machines,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 195–207, 2004.
  4.  M. Vahdati, N. Smith, and F. Zhao, “Influence of Intake on Fan Blade Flutter,” J. Turbomach., vol. 137, no. 8, 08 2015, doi: 10.1115/1.4029240.
  5.  J.D. Jeffers and C.E. Meece Jr, “F100 fan stall flutter problem review and solution,” J. Aircr., vol. 12, no. 4, pp. 350–357, 1975, doi: 10.2514/3.44454.
  6.  R. Rządkowski, V. Gnesin, and L. Kolodyzhnaya, “3d viscous flutter of 11th configuration blade row,” Adv. Vib. Eng., vol. 8, no. 3, pp. 213–228, 2009. [Online]. Available: https://www.elibrary.ru/item.asp?id=27911163.
  7.  J.L. Hess, “Calculation of potential flow about arbitrary threedimensional lifting bodies,” Naval Air Systems Command, Department of the Navy, Final Technical Report MDC J5679-01, 1972. [Online]. Available: https://apps.dtic.mil/sti/citations/AD0755480.
  8.  C.S. Prasad and L. Pešek, “Efficient prediction of classical flutter stability of turbomachinery blade using the boundary element type numerical method,” Eng. Anal. Boundary Elem., vol. 113, pp. 328–345, 2020, doi: 10.1016/j.enganabound.2020.01.013.
  9.  C.S. Prasad, R. Kolman, and L. Pešek, “A cost effective approach for subsonic aeroelastic stability analysis of turbomachinery 3d blade cascade. A reduced order aeroelastic model numerical approach,” Nonlinear Dyn.:under-review, 2021, doi: 10.21203/rs.3.rs-252660/v1.
  10.  V.A. Riziotis and S.G. Voutsinas, “Dynamic stall modelling on airfoils based on strong viscous-inviscid interaction coupling,” Int. J. Numer. Methods Fluids, vol. 56, pp. 185–208, 2008, doi: 10.1002/fld.1525.
  11.  N.R. García, A. Cayron, and J.N. Sørensen, “Unsteady double wake model for the simulation of stalled airfoils,” J. Power Energy Eng., vol. 3, pp. 20–25, 2015. doi: 10.4236/jpee.2015.37004.
  12.  A. Zanon, P. Giannattasio, and C.J. Simão Ferreira, “A vortex panel model for the simulation of the wake flow past a vertical axis wind turbine in dynamic stall,” Wind Energy, vol. 16, no. 5, pp. 661–680, 2013, doi: 10.1002/we.1515.
  13.  C. Prasad, Q.-Z. Chen, O. Bruls, F. D’Ambrosio, and G. Dimitriadis, “Aeroservoelastic simulations for horizontal axis wind turbines,” Proc. Inst. Mech. Eng., Part A: J. Power Energy, vol. 231, no. 2, pp. 103–117, 2016, doi: 10.1177/0957650916678725.
  14.  C. Prasad, Q.-Z. Chen, O. Bruls, F. D’Ambrosio, and G. Dimitriadis, “Advanced aeroservoelastic modeling for horizontal axis wind turbines,” in Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, July 2014, pp. 3097–3104.
  15.  Z. Goraj, A. Frydrychewicz, R. Świtkiewicz, B. Hernik, J. Gadomski, T. Goetzendorf-Grabowski, M. Figat, S. Suchodolski, and W. Chajec, “High altitude long endurance unmanned aerial vehicle of a new generation – a design challenge for a low cost, reliable and high performance aircraft,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 173–194, 2004.
  16.  C.S. Prasad and L. Pešek, “Analysis of classical flutter in steam turbine blades using reduced order aeroelastic model,” in The 14th Inter- national Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV), Lisabon, Portugal, Sept 2018, pp. 150–156, doi: 10.1051/matecconf/201821115001.
  17.  C.S. Prasad and L. Pešek, “Classical flutter study in turbomachinery cascade using boundary element method for incompressible flows,” in Advances in Mechanism and Machine Science, T. Uhl, Ed. Cham: Springer International Publishing, 2019, pp. 4055–4064, doi: 10.1007/978-3-030-20131-9_404.
  18.  C.S. Prasad and L. Pešek, “Subsonic stall flutter analysis in 2d blade cascade using hybrid boundary element method,” in In Proceedings of the 11th International Conference on Structural Dynamics, EURODYN 2020, Athens, Greece, November 2020, pp. 213–224.
  19.  J. Katz and A. Plotkin, Low-Speed Aerodynamics, 2nd ed. Cambridge University Press, 2001.
  20.  T. Wang and F.N. Coton, “Numerical simulation of wind tunnel wall effects on wind turbine flows,” Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, vol. 3, no. 3, pp. 135–148, 2000, doi: 10.1002/we.35.
  21.  D. Ashby and D. Sandlin, “Application of a low order panel method to complex three-dimensional internal flow problems,” NASA Contractor report 177424, Tech. Rep., 1986. [Online]. Available: https://ntrs.nasa.gov/citations/19860021529.
  22.  C.S. Prasad and G. Dimitriadis, “Application of a 3d unsteady surface panel method with flow separation model to horizontal axis wind turbines,” J. Wind Eng. Ind. Aerodyn., vol. 166, pp. 74–89, 2017, doi: 10.1016/j.jweia.2017.04.005.
  23.  A. Zanon, P. Giannattasio, and C.J. Simão Ferreira, “A vortex panel model for the simulation of the wake flow past a vertical axis wind turbine in dynamic stall,” Wind Energy, vol. 16, no. 5, pp. 661–680, 2013.
  24.  Y. Hanamura, H. Tanaka, and K. Yamaguchi, “A simplified method to measure unsteady forces acting on the vibrating blades in cascade,” Bull. JSME, vol. 23, no. 180, pp. 880–887, 1980, doi: 10.1299/jsme1958.23.880.
  25.  E.F. Crawley, “Measurements of aerodynamic damping on the mit transonic rotor,” Cambridge, Mass.: Gas Turbine & Plasma Dynamics Laboratory, Massachusetts Institute of Technology, Tech. Rep., 1981. [Online]. Available: http://hdl.handle.net/1721.1/104728.
  26.  V. Tsymbalyuk and J. Linhart, “Corrections of aerodynamic loadings measurement on vibrating airfoils,” in XVII IMEKO World Congress, Dubrovnik, Croatian Metrology Society. Citeseer, 2003, pp. 358–361.
  27. 3D Viscous Flutter in Turbomachinery Cascade by Godunov- Kolgan Method, ser. Turbo Expo: Power for Land, Sea, and Air, vol. Volume 5: Marine; Microturbines and Small Turbomachinery; Oil and Gas Applications; Structures and Dynamics, Parts A and B, 05 2006, doi: 10.1115/GT2006-90157.
  28.  R. Galbraith, M. Gracey, and E. Leith, “Summary of pressure data for thirteen aerofoils on the university of Glasgow’s aerofoil database,” GU Aero report-9221 University of Glasgow, 1992.
Go to article

Authors and Affiliations

Chandra Shekhar Prasad
1
Pavel Šnábl
1
Luděk Pešek
1
ORCID: ORCID

  1. Institute of Thermomechanics of the CAS, Prague, Czech Republic

This page uses 'cookies'. Learn more