Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One of the most important parameters, crucial to applications of superconductors in cryo-electrotechnique, is power loss. Measurements of losses in superconducting long sample wires require AC magnetic fields of a special geometry and appropriate high homogeneity. In the paper part of the theoretical basis for calculations and a simple design method for a race-track coil set are presented. An example of such home-made coils, with a magnetic field uniformity of about 0.2 % over the range of about 8 cm, is given. Also a simple electronic measurement system for the determination of AC magnetization loss in samples of superconducting tapes is presented.

Go to article

Authors and Affiliations

Marian Ciszek
Stanisław Trojanowski
Eduard Maievskyi
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a comparison of an AC radial flux interior permanent magnet (IPM) motor with the distributed winding (DW) and concentrated winding (CW). From time to time, manufacturers of electric vehicles change the design of electric motors, such changes may include changing the DW into CW and vice versa. A change to the winding in a radial permanent magnet synchronous motor may lead to a change in motor parameters during motor operation and /or change in the distribution of the magnetic field and thermal circuit of the electrical machine. The electromagnetic analysis, efficiency map, mechanical stress, and thermal analysis of the machine with the DW and CW are presented in this paper. This article describes the advantages and disadvantages of selected stator winding designs and helps understand manufacturers’ designers howtheDWandCWplay a key role in achieving the designed motor’s operational parameters such as continuous performance. Analyzing the performance of both machines will help identify their advantages and disadvantages with regard to thermal phenomena, magnetic field and operational parameters of the presented IPM prototypes. Both prototypes are based on commonly used topologies such as 12/8 (slot/pole) and 30/8 (slot/pole) IPM motors consisting of magnets arranged in a V-shape. The AC IPM motor was designed for an 80 kW propulsion system to achieve 170 N·m at a base speed of 4 500 rpm. Modern CAD tools are utilized throughout the numerical computations based on 2-D finite element methods. Selected test data are used to verify and validate the accuracy of finite element models.
Go to article

Authors and Affiliations

Adrian Młot
1
ORCID: ORCID
Mariusz Korkosz
2
ORCID: ORCID
Andrzej Lechowicz
1
Jerzy Podhajecki
3
Stanisław Rawicki
3

  1. Opole University of Technology, Poland
  2. Rzeszow University of Technology, Poland
  3. The Jacob of Paradies University, Poland

This page uses 'cookies'. Learn more