Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In modern microelectronics progress has been made towards low power ultra large-scale integration (ULSI), and nano-structure devices such as single electron transistors and quantum dots. In this technology application of new materials, which includes high-κ dielectrics for the MOSFET transistors, with extraordinary purity and uniformity is required. Failure analysis and reliability investigations of such films very often requires highresolution local measurements of electrical surface parameters. This kind of experiments can be performed using conductive atomic force microscopy, which provides simultaneous measurement of surface topography and current ?owing through the investigated layer. In order to acquire reliable data, there was designed a precise measurement and control system, which included a low-noise current-to-voltage converter of picoampere resolution, a scanning stage with control electronics and a data acquisition system. In the paper we describe the architecture of the designed and applied experimental set-up. We also present results of simultaneous measurements of topography and current on gold and highly oriented pyrolytic graphite (HOPG).

Go to article

Authors and Affiliations

G. Wielgoszewski
T. Gotszalk
M. Woszczyna
P. Zawierucha
E. Zschech
Download PDF Download RIS Download Bibtex

Abstract

Point of present exploration was to figure out the anticorrosion activity of Acacia Cyanophylla (Saligna leaves) extract on the corrosion of mild steel in dilute sulfuric acid medium, using weight loss measurements and electrochemical impedance spectroscopy. The result of the study revealed that the extract act as a potent inhibitor on mild steel in acid medium. The increase in inhibitor concentration and immersion time showed a positive effect on inhibition efficiency. EIS exhibited one capacitive loop which indicates that the corrosion reaction is controlled by charge transfer process. The increase of phase shift (n) in presence of (ACLE) lower surface roughness. This change reveals the adsorption of the inhibitor compound on the steel surface. According to the results of weight loss measurements, the adsorption of the extract on the steel surface can be described by the Langmuir isotherm. The inhibition mechanism of (ACLE) molecules involves physical interaction between the inhibitor and metal surface. Additionally, Protective film formation against acid attack was confirmed by FT-IR and AFM techniques.
Go to article

Authors and Affiliations

M. Tezeghdenti
N. Etteyeb
L. Dhouibi
O. Kanoun
Download PDF Download RIS Download Bibtex

Abstract

The paper contains the results of the initial surface treatment influence on the properties of the medical Ti-6Al-7Nb alloy with a modified zirconium oxide layer deposited on its surface by sol-gel method. In the paper, the analysis of results of potentiodynamic studies is presented as well as its resistance to pitting corrosion and electrochemical impedance spectroscopy (EIS), macroscopic observation of the surface of samples and analysis of geometrical structure with the use Atomic Force Microscope (AFM) were performed. The studies were performed on two groups of samples depending on the graduation of the sand used in sandblasted process – 50 μm and 250 μm. Based on the obtained results it can be concluded that the type of the initial surface treatment preceding the surface modification of the Ti-6Al-7Nb has a significant effect on its properties.

Go to article

Authors and Affiliations

A. Woźniak
B. Ziębowicz
A. Ziębowicz
W. Walke
Download PDF Download RIS Download Bibtex

Abstract

The present research work involves the study of the 3-D surface microtexture of sputtered indium tin oxide (ITO) prepared on glass substrates by DC magnetron at room temperature. The samples were annealed at 450°C in air and were distributed into five groups, dependent on ambient combinations applied, as follows: I group, using argon (Ar); II group, using argon with oxygen (Ar+O2); III group, using argon with oxygen and nitrogen (Ar+O2+N2); IV group, using argon with oxygen and hydrogen (Ar+O2+H2); and V group, using argon with oxygen, nitrogen, and hydrogen (Ar+O2+N2+H2). The characterization of the ITO thin film surface microtexture was carried out by atomic force microscopy (AFM). The AFM images were stereometrically quantitatively analyzed to obtain statistical parameters, by ISO 25178-2: 2012 and ASME B46.1-2009. The results have shown that the 3-D surface microtexture parameters change in accordance with different fabrication ambient combinations.
Go to article

Authors and Affiliations

Ş. Ţălu
1
ORCID: ORCID
S. Kulesza
2
ORCID: ORCID
M. Bramowicz
2
ORCID: ORCID
K. Stępień
3
ORCID: ORCID
D. Dastan
4

  1. Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Cluj-Napoca, 400020, Romania
  2. University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-719 Olsztyn, Poland
  3. Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Aleja 1000-lecia Państwa Polskiego 7, 25-314 Kielce, Poland
  4. Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, Georgia 30332, USA
Download PDF Download RIS Download Bibtex

Abstract

Scanning probe microscopy (SPM) since its invention in the 80’s became very popular in examination of many different sample parameters, both in university and industry. This was the effect of bringing this technology closer to the operator. Although the ease of use opened a possibility for measurements without high labour requirement, a quantitative analysis is still a limitation in Scanning ProbeMicroscopes available on the market. Based on experience of Nano-metrology Group, SPM still can be considered as a tool for quantitative examination of thermal, electrical and mechanical surface parameters. In this work we present an ARMScope platform as a versatile SPM controller that is proved to be useful in a variety of applications: fromatomic-resolution STM (Scanning TunnellingMicroscopy) toMulti-resonance KPFM (Kelvin Probe force microscopy) to commercial SEMs (Scanning electron microscopes).

Go to article

Authors and Affiliations

Bartosz Świadkowski
Tomasz Piasecki
Maciej Rudek
Michał Świątkowski
Krzysztof Gajewski
Wojciech Majstrzyk
Michał Babij
Andrzej Dzierka
Teodor Gotszalk
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the influence of ZrO2 coating on Ti6Al7Nb titanium alloy depending on the method of deposition. The coatings were made by sol-gel method and atomic layer deposition (ALD). Wettability tests, pitting corrosion assessment and electrochemical impedance spectroscopy (EIS) were carried out in the paper. Complementary macro- and microscopic observations, roughness analysis by profilometric method and atomic force microscopy (AFM) were made. Based on the results obtained, it can be concluded that the type of method of depositing the layer on the surface of the material has a significant influence on its properties and that it should be taken into account during the process of the material improvement. Drawing on the findings presented, it can be inferred that roughness has a significant impact upon the surface wetttability of the tested surfaces and their related corrosion resistance. The obtainment of hydrophobic surfaces is for smaller rougidity values.

Go to article

Authors and Affiliations

A. Woźniak
O. Bialas
M. Adamiak
Download PDF Download RIS Download Bibtex

Abstract

Silicate coatings have been considered as an alternative to toxic and carcinogenic other chemical treatments. In this paper, a strengthened silicate coating was formed on the surface of low carbon steel by dip immersion method. The modification and strengthening was done by loading colloidal nano-SiO2 into the film. The characterizations of nano-SiO2 were investigated by FESEM, TEM and FT-IR. The effects of nano contents (weight ratio) and drying temperatures on corrosion properties of silicate film were studied. Potentiodynamic polarization, electrochemical impedance spectroscopy and immersion tests have been used to study corrosion behavior of nano-loaded silicate films. Surface morphology, microstructure and its chemical composition were analyzed by means of FESEM, EDS, AFM, XRD, GIXRD, ATR-FTIR and Raman techniques. Results indicated that colloidal nano-SiO2 properly modified the silicate coatings and significantly improved the corrosion resistance and barrier property. Also drying temperature showed a considerable effect in silicate coating and higher corrosion resistance was obtained with 150°C curing.

Go to article

Authors and Affiliations

M.R. Majdi
I. Danaee
D. Zaarei
M. Farzam

This page uses 'cookies'. Learn more