Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 146
items per page: 25 50 75
Sort by:
Keywords ALS nDSM LULC changes
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study was an assessment of LiDAR point clouds for automating the mapping of land use and land cover changes, mainly land abandonment and the process of secondary forest succession. Detailed information about land cover was determined based on airborne laser scanning data. The presented study focuses on the analysis of the spatial range and structure of vegetation. The study area was located in Milicz district in the voivodeship of Lower Silesia – the central west part of Poland. The areas of interest were parcels where agricultural land had been abandoned and forest succession processes had progressed. Analysis of the spatial range of the secondary forest succession was carried out using a reclassified nDSM. Reclassification of the nDSM was done using > 1 m, > 2 m and > 3 m for the pixel values, representing the height of vegetation above the ground. Parameters such as height of vegetation, standard deviation of height and cover density were calculated, to show the process of the increase in forest succession on abandoned agricultural land. The results confirmed a discrepancy between the cadastral data and the actual use of the plots. In the study area, more than three times as much forested and wooded area was detected than had been recorded in official databases. Analyses based on airborne laser scanning point clouds indicated significant diversity in the vertical and horizontal structure of vegetation. The results demonstrated gradual succession of greenery in the research area.

Go to article

Authors and Affiliations

Marta Szostak
Adrian Bednarski
Piotr Wężyk
Download PDF Download RIS Download Bibtex

Abstract

In 1985–2002 thirteen weeds resistant to atrazine were selected by a repeated application of triazine herbicides on arable land, in orchards, non-agricultural land and at railways in the Czech Republic. Recently Digitaria sanguinalis biotypes resistant to atrazine have been found at three railway junctions. Long-lasting application of the active ingredient imazapyr at railways caused selection of resistant Kochia scoparia biotypes. High resistance to chlorsulfuron has been discovered in five Apera spica-venti biotypes originating in winter cereals fields. The molecular basis of resistance to atrazine has been identified in the following weeds: Kochia scoparia, Solanum nigrum, Senecio vulgaris, Conyza canadensis, Digitaria sanguinalis, Amaranthus retroflexus and Chenopodium album. The resistance was conferred by a glycine for serine substitution at residue 264 of the D1 protein in all of those weeds. The resistance to imazapyr in Czech Kochia scoparia biotypes was conferred by a mutation at codon 574 of the ALS gene. Analysis of the results of DNA sequencing indicated, that the mutation induced a leucine for tryptophane substitution. There was excellent correspondence between the phenotypic resistance to herbicides of individual plants and the presence of mutations.

Go to article

Authors and Affiliations

Jaroslav Salava
Daniela Chodová
Download PDF Download RIS Download Bibtex

Abstract

The quarrying industry is changing the local landscape, forming deep open pits and spoil heaps in close proximity to them, especially lignite mines. The impact can include toxic soil material (low pH, heavy metals, oxidations etc.) which is the basis for further reclamation and afforestation. Forests that stand on spoil heaps have very different growth conditions because of the relief (slope, aspect, wind and rainfall shadows, supply of solar energy, etc.) and type of soil that is deposited. Airborne laser scanning (ALS) technology deliver point clouds (XYZ) and derivatives as raster height models (DTM, DSM, nDSM=CHM) which allow the reception of selected 2D and 3D forest parameters (e.g. height, base of the crown, cover, density, volume, biomass, etc). The automation of ALS point cloud processing and integrating the results into GIS helps forest managers to take appropriate decisions on silvicultural treatments in areas with failed plantations (toxic soil, droughts on south-facing slopes; landslides, etc.) or as regular maintenance. The ISOK country-wide project ongoing in Poland will soon deliver ALS point cloud data which can be successfully used for the monitoring and management of many thousands of hectares of destroyed post-industrial areas which according to the law, have to be afforested and transferred back to the State Forest.
Go to article

Authors and Affiliations

Paweł Hawryło
Marta Szostak
Piotr Wężyk
Wojciech Krzaklewski
Marek Pająk
Marcin Pierzchalski
Piotr Szwed
Michał Ratajczak
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to determine the spatial structure of vegetation on the repository of the mine “Fryderyk” in Tarnowskie Góry. Tested area was located in the Upper Silesian Industrial Region (a large industrial region in Poland). It was a unique refuge habitat – Natura2000; PLH240008. The main aspect of this elaboration was to investigate the possible use of geotechniques and generally available geodata for mapping LULC changes and determining the spatial structure of vegetation. The presented study focuses on the analysis of a spatial structure of vegetation in the research area. This exploration was based on aerial images and orthophotomaps from 1947, 1998, 2003, 2009, 2011 and airborne laser scanning data (2011, ISOK project). Forest succession changes which occurred between 1947 and 2011 were analysed. The selected features of vegetation overgrowing spoil heap “Fryderyk” was determined. The results demonstrated a gradual succession of greenery on soil heap. In 1947, 84% of this area was covered by low vegetation. Tree expansion was proceeding in the westerly and northwest direction. In 2011 this canopy layer covered almost 50% of the research area. Parameters such as height of vegetation, crowns length and cover density were calculated by an airborne laser scanning data. These analyses indicated significant diversity in vertical and horizontal structures of vegetation. The study presents some capacities to use airborne laser scanning for an impartial evaluation of the structure of vegetation.
Go to article

Authors and Affiliations

Marta Szostak
Piotr Wężyk
Marek Pająk
Paweł Haryło
Marek Lisańczuk
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present work was to evaluate the selectivity of nicosulfuron, alone and in combinations, applied in post-emergence (V4) of glyphosate and sulfonylurea tolerant (RR/STS) soybean. The experiments were conducted in 2015/16 and 2016/17, in Piracicaba – state of São Paulo (SP). In 2016/17, the experiment was also conducted in Palotina – state of Paraná (PR). The experiment was a randomized block design, with four repetitions and 16 treatments, with combinations of nicosulfuron, glyphosate, chlorimuron, sulfometuron and cloransulam, applied alone or in tank mixture. Crop injury and variables related to agronomic performance were evaluated. Data were subjected to analysis of variance and treatment means were compared by the Tukey test. The results obtained are significant in the positioning of herbicides in RR/STS soybean, since in the five experiments, all the treatments were selective, except for glyphosate + sulfometuron which reduced the yield of a cultivar (CD 2630 RR/STS) in the 2015/16 season.
Go to article

Authors and Affiliations

Ricardo Victoria Filho
André Felipe Moreira Silva
Alfredo Junior Paiola Albrecht
Damião Vitor Wilson
Ana Ligia Giraldeli
Lucas Rafael de Marco
Henrique Fabrício Placido
Albrecht Leandro Paiola
Download PDF Download RIS Download Bibtex

Abstract

Archaeology of north-eastern Poland has been poorly recognized owing to vast forest areas and numerous lakes. This particularly refers to the Warmian–Masurian Voivodship, where forest covers over 30% of its area. Prospection of forested areas has become possible in Poland just over 10 years ago with the Airborne Laser Scanning (ALS) and Light Detection and Ranging (LiDAR). These techniques allow obtaining 3-D documentation of recognized and also unknown archaeological sites in the forested areas. Thanks to ALS/LiDAR prospection a significant number of archaeological structures have been identified also in the Warmia and Masuria regions. Among them oval-shaped hillforts, surrounded by perfectly spaced concentric moats and ramparts, located mainly on islands and in wetland areas, have raised particular attention. Based on field prospection and results of preliminary excavations, these objects have been considered as Iron Age hillforts. One of the best preserved objects of this type is on the Radomno Lake island, located several kilometres to the south of Iława town. Integrated geoarchaeological prospection of this hillfort emphasized benefits of using LiDAR in combination with results of geophysical prospection and shallow drillings. Applied methodology enabled to document the hillfort shape, and to study its geological structure and stratigraphy. The results clearly indicate that integration of LiDAR data with geophysical prospecting is indispensable in future archaeological surveys. It is a perfect tool for remote sensing of archaeological objects in forest areas, so far not available for traditional archaeology.
Go to article

Authors and Affiliations

Fabian Welc
Jerzy Nitychoruk
Rafał Solecki
Kamil Rabiega
Jacek Wysocki
Download PDF Download RIS Download Bibtex

Abstract

This article conducts a reading of ʾAbū Bakr b. Muḥsin Bā ʿAbbūd al-ʿAlawī’s al-Maqāmāt al-hindiyya (1715), employing Vladimir Propp’s model of narrative functions. Although Proppian functions have frequently been harnessed to deconstruct essential components and plot architecture within the maqāma genre, the article emphasises the intrinsic limitations of this approach, especially when the focus is restricted to the analysis of isolated units rather than the entire collection. In accordance with various literary analyses, this research interprets the maqāma as a genre that orchestrates individual narrative units to synthesise a more expansive, novel-like overarching narrative. Within this intricate framework, the text accentuates the interconnected events between the narrator and the trickster. The emphasis lies on the multifaceted transformation experienced by both characters: the first encountering and engaging with the world’s complexity, and the second undergoing a progressive moral conversion, culminating in his eventual demise. In the process, the article posits that the inherent quality of the maqāma of Bā ʿAbbūd, inspired by the models of al-Ḥarīrī, shows the flexibility of the genre. Within the predictability of its narratives, the maqāma is a genre able to become a vessel for diverse thematic discourses that the author seeks to convey.
Go to article

Authors and Affiliations

Andrea Maria Negri
1
ORCID: ORCID

  1. University of Bologna, Italy
Download PDF Download RIS Download Bibtex

Abstract

The present work comprises the development of Al6061/nano Al2O3 composites with 0 to 4 weight percent in steps of 0.5 wt. % of nano alumina particles by using ultrasonic assisted stir casting. Casted samples were subjected to heat treatment and hot forging. Further forged and heat-treated gear blanks of nano Al2O3 (0 to 3.0 weight %) reinforced nanocomposites were machined to make spur gears for the wear test. The results have shown that nano Al2O3 reinforcement in the Al6061 matrix with heat treatment and forging improves the hardness and compressive strength up to 3.5 wt. %, after that, it starts decreasing because of the agglomeration of nano alumina particles. SEM results reveal grain refinement of the pure alloy after reinforcement. Removal of porosity and voids observed after forging operation. Wear resistance increasing with incorporation of Al2O3 nanoparticles in base alloy, reinforcement wt. %, precipitation hardening and hot forging also improves wear resistance and mechanical properties. These composites have widespread applications in gear, brake discs, crankshaft, clutch plates, pistons, and other components of automobiles and aircraft structures.
Go to article

Authors and Affiliations

Rajesh Purohit
1
M.M.U. Qureshi
1
Ashish Kumar
1
ORCID: ORCID
Abhishek Mishra
1
R.S. Rana
1

  1. Mechanical Engineering Department, MANIT, Bhopal, India-462003
Download PDF Download RIS Download Bibtex

Abstract

In this work, 25 wheels were cast with three different grain refiners: Al5Ti1B, Al3Nb1B and MTS 1582. Samples were machined from the wheels to check the mechanical properties. It was found that Nb grain refinement had the lowest grain size (260 mm) and highest tensile properties (yield strength of 119-124 MPa and ultimate tensile strength of 190-209 MPa). Al5Ti1B and MTS 1582 revealed quite similar results (110 MPa yield and 198 MPa ultimate tensile strength). The fading of the grain refining effect of Al5TiB1 master alloy was observed in both Nb and Ti added castings whereas during the investigated time interval, the fading was not observed when MTS 1582 was used.
Go to article

Authors and Affiliations

F. Aydogan
1
K.C. Dizdar
2
ORCID: ORCID
H. Sahin
2
ORCID: ORCID
E. Mentese
1
D. Dispinar
2
ORCID: ORCID

  1. Doktas Wheels, Turkey
  2. Istanbul Technical University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a study concerning an AlSi7Mg alloy and the effect of subjecting the liquid metal to four different processes: conventional refining with hexachloroethane; the same refining followed by modification with titanium, boron, and sodium; refining by purging with argon carried out in parallel with modification with titanium and boron salts and strontium; and parallel refining with argon and modification with titanium, boron, and sodium salts. The effect of these four processes on compactness of the material, parameters of microstructure, and fatigue strength of AlSi7Mg alloy after heat treatment. It has been found that the highest compactness (the lowest porosity ratio value) and the most favorable values of the examined parameters of microstructure were demonstrated by the alloy obtained with the use of the process including parallel purging with argon and modification with salts of titanium, boron, and sodium. It has been found that in the fatigue cracking process observed in all the four variants of the liquid metal treatment, the crucial role in initiation of fatigue cracks was played by porosity. Application of the process consisting in refining by purging with argon parallel to modification with Ti, B, and Na salts allowed to refine the microstructure and reduce significantly porosity of the alloy extending thus the time of initiation and propagation of fatigue cracks. The ultimate effect consisted in a distinct increase of the fatigue limit value.

Go to article

Authors and Affiliations

M. Tupaj
ORCID: ORCID
A.W. Orłowicz
ORCID: ORCID
A. Trytek
ORCID: ORCID
Marek Mróz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Metal-intermetallic layered (MIL) composites attract considerable attention due to their remarkable structural and ballistic performance. This study aimed to develop a Ti/Al-based multilayered MIL material by adding ceramic powders, since they can improve the composite’s impact resistance. To this end, an experiment was conducted which a stack of alternating Ti and Al sheets bonded by hot pressing; Ti/Al multilayers containing additional layers of Al2O3 and SiC powders were also produced. The samples obtained were examined using electron microscopy techniques. The clads’ mechanical properties were investigated using a Charpy hammer. In the reaction zone, only one intermetallic phase occurred: the Al3Ti phase. The model with an additional Al2O3 layer showed the highest impact energy. None of the Ti/Al clads broke during the Charpy impact test, a result proving their high ductility.
Go to article

Bibliography

[1] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Mater. Design 35, 225-234 (2012). DOI: https://doi.org/10.1016/j.matdes.2011.09.030
[2] F. Foadian, M. Soltanieh, M. Adeli, M. Etminanbakhsh, A Study on the Formation of Intermetallics During the Heat Treatment of Explosively Welded Al-Ti Mulitlayers, Metall. Mater. Trans. A 45A, 1823 (2014). DOI: https://doi.org/10.1007/s11661-013-2144-6
[3] H. Paul, Ł. Maj, M. Prażmowski, A. Gałka, M. Miszczyk, P. Petrzak, Microstructure and mechanical properties of multilayered Al/Ti composites produced by explosive welding, Procedia Manufacturing 15, 1391-1398 (2018). DOI: https://doi.org/10.1016/j.promfg.2018.07.343
[4] D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads, Mater. Lett. 198, 160-163 (2017). DOI: https://doi.org/10.1016/j.matlet.2017.04.025
[5] F. Kong, Y. Chen, D. Zhang, Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling, Mater. Design 32, 3167-3172 (2011). DOI: https://doi.org/10.1016/j.matdes.2011.02.052
[6] H. Xiao, Z. Qi, C. Yu, C. Xu, Preparation and properties for Ti/ Al clad plates generated by differential temperature rolling, J. Mater. Process. Tech. 249, 285-290 (2017). DOI: https://doi.org/10.1016/j.jmatprotec.2017.06.013
[7] M. Fan, Z. Luo, Z. Fu, X. Guo, J. Tao, Vacuum hot pressing and fatigue behaviors of Ti/Al laminate composites, Vacuum 154, 101- 109 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.04.047
[8] L. Qin, M. Fan, X. Guo, J. Tao, Plastic deformation behaviors of Ti-Al laminated composite fabricated by vacuum hot-pressing, Vacuum 155, 96-107 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.05.021
[9] J . Li, K.H. Wang, K. Zhang L.L. Kang, H. Liang, Mechanism of interfacial reaction between Ti and Al-ceramic, Mater. Design 105, 223-233 (2016). DOI: https://doi.org/10.1016/j.matdes.2016.05.073
[10] G .H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal, A. Loureiro, Explosive welding of aluminium to stainless steel, J. Mat. Process. Tech. 262, 340-349 (2018). DOI: https://doi.org/10.1016/j.jmatprotec.2018.06.042
[11] I. D. Zakharenko, Critical conditions in detonation welding, Fizika Goreniya i Vzryva 8 (3), 422-427 (1972).
[12] M. Tayyebi, D. Rahmatabadi, M. Adhami, R. Hashemi, Influence of AR B technique on the microstructural, mechanical and fracture properties of the multilayered Al1050/Al5052 composite reinforced by SiC particles, J. Mater. Res. Tech. 8 (5), 4287-4301 (2019). DOI: https://doi.org/10.1016/j.jmrt.2019.07.039
[13] M.N. Yuan, Lili Li, Zh J. Wang, Study of the microstructure modulation and phase formation of Ti-Al3Ti laminated composites, Vacuum 157, 481-486 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.09.002
Go to article

Authors and Affiliations

W. Kowalski
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
Ł. Maj
1
ORCID: ORCID
I. Mania
1
ORCID: ORCID
M. Faryna
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science , Polish Academy of Sciences , 25 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Effect of Cu addition on oxide growth of Al-7 mass%Mg alloy at high temperature was investigated. As-cast microstructures of Al-7 mass%Mg and Al-7 mass%Mg-1 mass%Cu alloys showed α-Al dendrites and area of secondary particles. The 1 mass%Cu addition into Al-7 mass%Mg alloy formed Mg32(Al, Cu)49 ternary phase with β-Al3Mg2. The total fraction of two Mg-containing phases in Cu-added alloy was higher than the β-Al3Mg2 fraction in Cu-free alloy. From measured weight gains depending on time at 500°C under an air atmosphere, it was shown that all samples exhibited significant weight gains depending on time. Al-7mass%Mg-1mass%Cu alloy showed the relatively increased oxidation rate when compared with Cu-free alloy. All the oxidized cross-sections throughout the entire oxidation time showed coarse and dark areas regarded as oxides grown from the surface to inside, but bigger oxidized areas were formed in the Al-7mass%Mg-1mass%Cu alloy containing higher fraction of Mg-based phases in the as-cast microstructure. As a result of compositional analysis on the oxide clusters, it was found that the oxide clusters contained Mg-based oxides formed through internal oxidation during a long time exposure to oxidizing environments.
Go to article

Bibliography

[1] J.R. Davis, ASM International, Aluminum and Aluminum Alloys, Materials Park 1993.
[2] H. Watanabe, K. Ohori, Y. Takeuchi, Trans. Iron Steel Inst. Jpn. 27, 730 (1987).
[3] J.L. García-Hernández, C.G. Garay-Reyes, I.K. Gómez-Barraza, M.A. Ruiz-Esparza-Rodríguez, E.J. Gutiérrez-Castañeda, I. Estrada-Guel, M.C. Maldonado-Orozco, R. Martínez-Sánchez, J. Mater. Res. Technol. 8 (6), 5471 (2019).
[4] M . Mihara, C.D. Marioara, S.J. Andersen, R. Holmestad, E. Kobayashi, T. Sato, Mater. Sci. Eng. A, 658, 91 (2016).
[5] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, T.W. Lee, S.H. Lim, S.K. Kim, Int. J. Metalcast. 13, 121 (2019).
[6] G. Wu, K. Dash, M.L. Galano, K.A.Q. O’Reilly, Corros. Sci. 155, 97 (2019).
[7] B.H. Kim, S.H. Ha, Y.O. Yoon, H.K. Lim, S.K. Kim, D.H. Kim, Mater. Lett. 228, 108 (2018).
[8] H. Okamoto, J. Phase Equilibria 19, 598 (1998).
[9] T.S. Parel, S.C. Wang, M. J. Starink, Mater. Des. 31, S2 (2010).
[10] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. Van Ende, Calphad 54, 35 (2016).
[11] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, T.W. Lee, S.H. Lim, S.K. Kim, Sci. Adv. Mater. 10, 697 (2018).
[12] D . Ajmera, E. Panda, Corros. Sci. 102, 425 (2016).
Go to article

Authors and Affiliations

Seong-Ho Ha
1
ORCID: ORCID
Abdul Wahid Shah
1
ORCID: ORCID
Bong-Hwan Kim
1
ORCID: ORCID
Young-Ok Yoon
1
ORCID: ORCID
Hyun-Kyu Lim
1
ORCID: ORCID
Shae K. Kim
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology (KITECH), Advanced Materials and Process R&D Department, Incheon 21999, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Influence of Si addition on oxide layer growth of Al-6 mass%Mg alloys in molten state was investigated in this study. After melt holding for 24 h, the melt surface of only Si-free alloy became significantly bumpy, while no considerably oxidized surface was observed even with 1 mass%Si addition. There was no visible change on the appearance of melt surfaces with increasing Si content. As a result of compositional analysis on the melt samples between before and after melt holding, the Si-added alloys nearly maintained their Mg contents even after the melt holding for 24 h. On the other hand, the Mg content in the Si-free alloy showed a great reduction. The bumpy surface on Si-free alloy melt showed a large amount of pores and oxide clusters in its cross-section, while the Si-added alloy had no significantly grown oxide clusters on the surfaces. As a result of compositional analysis on the surfaces, the oxide clusters in Si-free alloy contained a great amount of Mg and oxygen. The oxide layer on the Si-added alloy was divided into Mg-rich and Mg-poor areas and contained certain amounts of Si. Such a mixed oxide layer containing Si would act as a protective layer during the melt holding for a long duration.
Go to article

Bibliography

[1] J.R. Davis, ASM International, Aluminum and Aluminum Alloys, Materials Park 1993.
[2] G . Wu, K. Dash, M.L. Galano, K.A.Q. O’Reilly, Corros. Sci. 155, 97 (2019).
[3] B.H. Kim, S.H. Ha, Y.O. Yoon, H.K. Lim, S.K. Kim, D.H. Kim, Mater. Lett. 228, 108 (2018).
[4] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, T.W. Lee, S.H. Lim, S.K. Kim, Sci. Adv. Mater. 10, 697 (2018).
[5] D . Ajmera, E. Panda, Corros. Sci. 102, 425 (2016).
[6] N. Smith, A. Kvithyld, G. Tranell, Metall. Mater. Trans. B 49, 2846 (2018).
[7] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, T.W. Lee, S.H. Lim, S.K. Kim, Int. J. Metalcast. 13, 121 (2019).
[8] J. Jeong, J. Im, K. Song, M. Kwon, S.K. Kim, Y.B. Kang, S.H. Oh, Acta Mater. 61, 3267 (2013).
[9] F . Zarei, H. Nuranian, K. Shirvani, Surf. Coat. Technol. 394, 125901 (2020).
[10] Y.L. Zhang, J. Li, Y.Y. Zhang, D.N. Kang, J. Alloys Compd. 827, 154131 (2020).
[11] W. Kai, P.C. Kao, P.C. Lin, I.F. Ren, J.S.C. Jang, Intermetallics 18, 1994 (2010).
[12] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, S.K. Kim, Sci. Adv. Mater. 10, 694 (2018).
[13] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. Van Ende, Calphad 54, 35 (2016).
Go to article

Authors and Affiliations

Young-Ok Yoon
1
ORCID: ORCID
Seong-Ho Ha
1
ORCID: ORCID
Abdul Wahid Shah
1
ORCID: ORCID
Bong-Hwan Kim
1
ORCID: ORCID
Hyun-Kyu Lim
1
ORCID: ORCID
Shae K. Kim
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology (KITECH), Advanced Materials and Process R&D Department, Incheon 21999, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Experimental methods are presented for determining the thermal resistance of vertical-cavity surfaceemitting lasers (VCSELs) and the lateral electrical conductivity of their p-type semiconductor layers. A VCSEL structure was manufactured from III-As compounds on a gallium arsenide substrate. Conductivity was determined using transmission line measurement (TLM). Electrical and thermal parameters were determined for various ambient temperatures. The results could be used for computer analysis of VCSELs. Keywords: TLM, thermal resistance, VCSEL, AlGaAs.
Go to article

Authors and Affiliations

Patrycja Śpiewak
1
ORCID: ORCID
Marcin Gębski
1
ORCID: ORCID
Włodek Strupiński
2 3
Tomasz Czyszanowski
1
Walery Kołkowski
2
Iwona Pasternak
2 3
Robert P. Sarzała
1
ORCID: ORCID
Włodzimierz Nakwaski
1
Włodzimierz Wasiak
1

  1. Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczanska 219, 90-924 Łódz, Poland
  2. Vigo Photonics S.A., ul. Poznanska 129/133, 05-850 Ozarów Mazowiecki, Poland
  3. Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The presented access the influence of Mn content (0-0.94 wt.%) on the course of the cooling curves, phase transformation, macrostructure, and microstructure of Al-Cu alloys for three series: initial (Series I), with the addition of an AlTi master (Series II), and modified with AlTi5B1 (Series III). The maximum degree of undercooling ΔT was determined based on the cooling curves. The surface density of the grains (NA) was determined and associated with the inverse of solidification interval 1/ΔTk. Titanium (contained in the charge materials as well as the modifier) has a significant effect on the grinding of the primary grains in the tested alloys. A DSC thermal analysis allowed for the determination of phase transition temperatures under conditions close to equilibrium. For series II and III, the number of grains decreases above 0.2 wt.% Mn with a simultaneous increase in solidification interval 1/ΔTk. The presence of Al2Cu eutectics as well as the Cu-, Fe-, and Mn-containing phases in the examined samples was demonstrated using scanning electron microscopy.

Go to article

Authors and Affiliations

S. Stąpór
M. Górny
M. Kawalec
B. Gracz
Download PDF Download RIS Download Bibtex

Abstract

Mn-Al alloys are important alloys due to their magnetic properties and have been identified as permanent magnets. This alloy possesses magnetic properties and can be manufactured at a relatively low cost. Mn-Al alloys could be an alternative to rare earth magnets and hard ferrites and have a promising future. In this study, the effects of sintering temperature, holding time and pressure on densification, average grain size and magnetic properties of the SPS-ed Mn-Al alloys were observed. However, with the different sintering parameters, the magnetic phase τ phase could be achieved. To obtain the τ phase, different annealing methods were tried, yet samples heated to 650°C and air cooled exhibited magnetic properties. This sample was selected from various sintering parameters due to its high density of 99% N6 (800°C – 300 sec – 60 MPa) and has an average grain size of 137±18.1 µm. The uniqueness of this work is that statistical approaches such as Taguchi design of experiment (DOE) and regression were used for optimization of the manufacturing process.
Go to article

Authors and Affiliations

Can Burak Danisman
1
ORCID: ORCID
Gultekin Goller
1
ORCID: ORCID

  1. Istanbul Technical University, Department of Metallurgical and Materials Engineering, Istanbul, 34469, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this Paper, a parametric study on pipes buried in soil was performed illustrating the results of blast loading. Effects of various parameters such as the physical properties of water, oil, gas, air, soil, pipes, and TNT have been investigated. The arbitrary Lagrangian-Eulerian (ALE) method was employed using LS-DYNA software. The maximum pressure in a buried pipe explosive was observed at an angle of about 0° to 45° and the minimum pressure occurred at an angle of about 45° to 90°. Therefore, all figures in this study illustrate that fluid pressure levels in buried pipes can help in their stabilization. In generally, by increasing the 1.23 times of liquid density under the explosion, the pressure levels in the soil decreased by 1.3 percent. The gas pressure has been increasing more than oil and water pipes 39.73 and 40.52 percent, respectively.

Go to article

Authors and Affiliations

M. Parvizi
B. Aminnejad
A.R. Fiouz
Download PDF Download RIS Download Bibtex

Abstract

Plasma oxidation, similarly to anodic oxidation (anodizing), are classified as electrochemical surface treatment of metals such as Al, Mg, Ti and their alloys. This type of treatment is used to make surface of castings, plastically processed products, shaped with incremental methods to suitable for certain requirements. The most important role of the micro plasma coating is to protect the metal surface against corrosion. It is well known that coating of aluminium alloys containing silicon using anodic oxidation causes significant difficulties. They are linked to the eutectic nature of this alloy and result in a lack of coverage in silicon-related areas. The coating structure in these areas is discontinuous. In order to eliminate this phenomenon, it is required to apply oxidation coatings using the PEO (Plasma Electrolytic Oxidation) method. It allows a consistent, crystalline coating to be formed. This study presents the mechanical properties of the coatings applied to Al-Si alloy using the PEO method. As part of the testing, the coating thickness, microhardness and scratch resistance were determined. On the basis of the results obtained, it was concluded that the thickness of the coatings complies with the requirements of conventional anodizing. Additionally, microhardness values exceeded the results obtained with standard methods.
Go to article

Bibliography

[1] Famiyeh, L. & Huang, H. (2019). Plasma electrolytic oxidation coatings on aluminum alloys: microstructures, properties, and applications. Modern Concepts in Material Science. 2(1), 1-13. DOI: 10.33552/MCMS.2019.02.000526.
[2] Sieber, M., Simchen, F., Morgenstern, R., Scharf, I. & Lampke, T. (2018). Plasma electrolytic oxidation of high-strength aluminium alloys-substrate effect on wear and corrosion performance. Metals. 8(5), 356. DOI: 10.3390/met8050356.
[3] Matykina, E., Arrabal, R., Mohedano, M., Mingo, B., Gonzalez, J., Pardo, A. & Merino, M.C. (2017). Recent advances in energy efficient PEO processing of aluminium alloys. Transactions of Nonferrous Metals Society of China. 27(7) 1439-1454. DOI: 10.1016/S1003-6326(17)60166-3.
[4] Agureev, L., Savushkina, S., Ashmarin, A., Borisov, A., Apelfeld, A., Anikin, K., Tkachenko, N., Gerasimov, M., Shcherbakov, A., Ignatenko, V. & Bogdashkina, N. (2018). Study of plasma electrolytic oxidation coatings on aluminum composites. Metals. 8(6), 459. DOI: 10.3390/met8060459.
[5] Lakshmikanthan, A., Bontha, S., Krishna, M., Praveennath, G.K. & Ramprabhu, T. (2019). Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. Journal of Alloys and Compounds. 786, 570-580. DOI: 10.1016/j.jallcom.2019.01.382.
[6] Lakshmikanthan, A., Prabhu, T.R., Babu, U.S., Koppad, P.G., Gupta, M., Krishna, M. & Bontha, S. (2020). The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. Journal of Materials Research and Technology. 9(3), 6434-6452. DOI: 10.1016/j.jmrt.2020.04.027.
[7] Rogov, A., Lyu, H., Matthews, A. & Yerokhin, A. (2020). AC plasma electrolytic oxidation of additively manufactured and cast AlSi12 alloys. Surface and Coatings Technology, 399, 126116. DOI: 10.1016/j.surfcoat.2020.126116.
[8] Li, K., Li, W., Zhang, G., Zhu, W., Zheng, F., Zhang, D. & Wang, M. (2019). Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al-Si alloy. Journal of Alloys and Compounds. 790, 650-656. DOI: 10.1016/j.jallcom.2019.03.217.
[9] Gencer, Y., Tarakci, M., Gule, A.E. & Oter C.Z. (2014). Plasma Electrolytic Oxidation of Binary Al-Sn Alloys. Acta Physica Polonica A. 125(2), 659-663. DOI: 10.12693/APhysPolA.125.659.
[10] Moszczyński, P. & Trzaska, M. (2011). Shaping of oxide layers on the aluminum surface by plasma electrochemical oxidation. Elektronika: konstrukcje, technologie, zastosowania. 52(12), 96-99. (in Polish).
[11] He, J., Cai, Q.Z., Luo, H.H., Yu, L. & Wei, B.K. (2009). Influence of silicon on growth process of plasma electrolytic oxidation coating on Al–Si alloy. Journal of Alloys and Compounds. 471(1-2), 395-399. DOI: 10.1016/ j.jallcom.2008.03.114.
[12] Blawert, C., Karpushenkov, S.A., Serdechnovaa, M., Karpushenkava, L.S. & Zheludkevicha, M.L. (2020). Plasma electrolytic oxidation of zinc alloy in a phosphate-aluminate electrolyte. Applied Surface Science. 505, 144552, DOI: 10.1016/j.apsusc.2019.144552.
[13] Dehnavi, V. (2014). Surface Modification of Aluminum Alloys by Plasma Electrolytic Oxidation. A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy The School of Graduate and Postdoctoral Studies, The University of Western Ontario London, Ontario, Canada.
[14] Zhang, Y., Xu, H., Yang, Y. (2007). Study on the optimization of pulse frequency in the micro arc oxidation of aluminum alloys. Proceedings of Vacuum Metallurgy and Surface Engineering. Beijing: Electronics Industry Press. 33−40.
[15] Habazaki, H., Onodera, T., Fushimi, K., Konno, H. & Toyotake, K. (2007). Spark anodizing of β-Ti alloy for wear resistant coating. Surface and Coatings Technology. 201(21), 8730-8737. DOI: 10.1016/j.surfcoat.2006.05.041.
[16] Kurze, P., Krysmann, W. & Schneider, H.G. (2006). Application fields of ANOF layers and composites. Crystal Research and Technology. 21(12), 1603-1609. DOI: 10.1002/crat.2170211224.
[17] Butyagin, P.I., Khorkhryakov, Y.V. & Mamaev, A.I. (2003). Microplasma systems for creating coatings on aluminium alloys. Materials Letters. 57(11), 1748-1751. DOI: 10.1016/S0167-577X(02)01062-5.
[18] Sonova, A.I. & Terleeva, O.P. (2008). Morphology, structure, and phase composition of microplasma coatings formed on Al−Cu−Mg alloy. Protection of Metals. 44(1), 65-75. DOI: 10.1134/S0033173208010098.
[19] Shihai, C., Jiunmin, H., Weijing, L., Suk-Bong, K. & Jung-Moo, L. (2006). Study on wear behavior of plasma electrolytic oxidation coatings on aluminum alloy. Rare Metals. 25(6), 141-145. DOI: 10.1016/S1001-0521(08)60069-8.
[20] Dai, L., Li, W., Zhang, G., Fu, N. & Duan, Q. (2017). Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode. In IOP Conf. Series: Materials Science and Engineering, 19–21 November 2016 (167, 012063), Sanya, China: IOP Publishing Ltd. DOI: 10.1088/1757-899X/167/1/012063.
[21] Li, Q.B., Liu, C.C., Yang, W.B. & Liang, J. (2017). Growth mechanism and adhesion of PEO coatings on 2024Al alloy. Surface Engineering. 33(10), 760-766. DOI: 10.1080/02670844.2016.1200860.
[22] Ayday, A. & Durman, M. (2015). Growth characteristics of plasma electrolytic oxidation coatings on aluminum alloys. Acta Physica Polonica A. 127(4), 886-887, DOI: 10.12693/APhysPolA.127.886.
[23] Dehnavi, V., Shoesmith, D.W., Luan, B.L., Yari, M. & Liu, X.Y. & Rohani, S. (2015). Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy – The effect of the PEO process stage. Materials Chemistry and Physics. 161, 49-58. DOI: 10.1016/j.matechemphys.2015.04.058.
[24] Gębarowski, W. & Pietrzyk, S. (2012). Plasma electrolytic oxidation of aluminum process technology outline. Rudy i Metale Nieżelazne. 57(4), 237-242. (in Polish).
[25] Duanjie, L. (2014). Scratch hardness measurement using mechanical tester. Retrieved February 12, 2020, from http://nanovea.com/app-notes/scratch-hardness-measurement.pl
[26] Hussein, R.O. & Northwood, D.O. (2014). Production of anti-corrosion coatings on light alloys (Al, Mg, Ti) by plasma-electrolytic oxidation (PEO). In Mahmood Aliofkhazraei (Eds.), Developments in Corrosion Protection (pp. 201-238). London, UK: IntechOpen Limited. DOI: 10.5772/57171.
[27] Wredenberg, F. & Larsson, P.-L. (2009). Scratch testing of metals and polymers: Experiments and numerics. Wear. 266(1-2), 76-83. DOI: 10.1016/j.wear.2008.05.014.
[28] Hussein, R.O., Northwood, D.O. & Nie, X. (2012). The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. Journal of Alloys and Compounds. 541, 41-48, DOI: 10.1016/j.jallcom.2012.07.003.
[29] Matykina, E., Arrabal, R., Skeldon, P. & Thompson, G.E. (2009). Investigation of the growth processes of coatings by AC plasma electrolytic oxidation of aluminum. Electrochimica Acta. 54(27), 6767-6778.
[30] Sharift, H., Aliofkhazraei, M. & Darband, G.B. (2018). A review on adhesion strength of PEO coatings by scratch test method. Surface Review and Letters. 25(3), 1830004. DOI: 10.1142/S0218625X18300046.
Go to article

Authors and Affiliations

P. Długosz
1
ORCID: ORCID
A. Garbacz-Klempka
2
ORCID: ORCID
J. Piwowońska
1
P. Darłak
3
ORCID: ORCID
M. Młynarczyk
3

  1. Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str. 30-418 Cracow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Kraków, Poland
  3. AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

An attempt has been made to synthesize the aluminium based ex-situ (Al-SiC) and in-situ (Al-TiB2) formed metal matrix composites with varying weight percentage of reinforcement contents such as 4wt.%, 6wt.% and 8wt.%. Synthesized composites were subjected to a cold extrusion process followed by heat treatment according to the ASTM B 918-01 standards. The mechanical properties of in-situ composites were evaluated as per the ASTM guidelines and compared with ex-situ formed composites and base metal properties. Superior properties were noticed in the in-situ formed composites and the mechanical properties such as yield strength, Ultimate tensile strength (UTS) and Hardness for both ex-situ and in-situ composites were found to increase with increasing the reinforcement addition. Cold extruded Al-8 wt.% SiC composite properties such as hardness, yield strength and UTS are 87 RB, 152 MPa, 216 MPa respectively. Whereas, for Al-8 wt.% TiB2 composite, the corresponding properties are 94 RB, 192 MPa, 293 MPa. The morphology of the composites is analysed by Optical and Scanning Electron Microscopic (SEM) whereas presence of reinforcement particles such SiC and TiB2 along with intermetallic phases Mg2Si and Al5FeSi are confirmed by EDX, XRD and Element Mapping analyses.
Go to article

Authors and Affiliations

B. Gobalakrishnan
1
C. Rajaravi
2
Gobikrishnan Udhayakumar
3
P.R. Lakshminarayanan
4

  1. CARE College of Engineering, Department of Mechanical Engineering, Trichy-620 009, Tamil Nadu, India
  2. Hindusthan College of Engineering and Technology, Coimbatore – 641 032, Tamilnadu, India
  3. Sona College of Technology, Department of Mechanical Engineering, Salem – 636 005, Tamil Nadu, India
  4. Annamalai University, Department of Manufacturing Engineering, Annamalai Nagar-608 002, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

The article focuses on the analysis of the effect of Zr on the properties of the aluminium alloy AlSi9Cu1Mg. The effect of Zr was evaluated depending on the change in mechanical properties and heat resistance during a gradual addition of Zr with an increase of 0.05 wt. % Zr. Half of the cast experimental samples from each variant were heat treated by precipitation hardening T6 (hereinafter HT). The measured values in both states indicate an improvement of the mechanical properties, especially in the experimental variants with a content of Zr ≥ 0.20 wt. %. In the evaluation of Rm, the most significant improvement occurred in the experimental variant with an addition of Zr 0.25 wt. % after HT and E in the experimental variant with addition of Zr 0.20 wt. % after HT. Thus, a difference was found from the results of the authors defining the positive effect of Zr, in particular at 0.15 wt. %. When evaluating the microstructure of the AlSi9Cu1Mg alloy after Zr alloying, Zr phases are already eliminated with the addition of Zr 0.10 wt. %. Especially at higher levels of Zr ≥ 0.20 wt. %, long needle phases with slightly cleaved morphology are visible in the metal matrix. It can be stated that a negative manifestation of Zr alloying is expressed by an increase in gassing of experimental alloys, especially in variants with a content of Zr ≥ 0.15 wt. %. Experimental samples were cast into ceramic moulds. The development of an experimental alloy AlSi9Cu1Mg alloyed with Zr would allow the production of a more sophisticated material applicable to thin-walled Al castings capable of operating at higher temperature loads.

Go to article

Authors and Affiliations

M. Matejka
ORCID: ORCID
M. Kuriš
D. Bolibruchova
R. Pastirčák
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This article presents a study of the crystallization and microstructure of the AlSi9 alloy (EN AC-AlSi9) used for the alfin processing of iron ring supports in castings of silumin pistons. Alfin processing in brief is based on submerging an iron casting in an Al-Si bath, maintaining it there for a defined time period, placing it in a chill mould casting machine and immersing it in the alloy. This technology is used for iron ring supports in the pistons of internal combustion engines, among others. Thermal analysis shows that when the AlSi9 alloy contains a minimal content of iron, nucleation and increase in the triple (Al)+Fe+(Si) eutectic containing the -Al8Fe2Si phase takes place at the end of the crystallization of the double (Al)+(Si) eutectic. Due to the morphology of the ”Chinese script” the -Al8Fe2Si phase is beneficial and does not reduce the alloy’s brittleness. After approx. 5 hours of alfin processing, the -Al5FeSi phase crystallizes as a component of the +Al5FeSi+(Si) eutectic. Its disadvantageous morphology is ”platelike” with sharp corners, and in a microsection of the surface, ”needles” with pointed corners are visible, with increases the fragility of the AlSi9 alloys.

Go to article

Authors and Affiliations

J. Piątkowski
ORCID: ORCID
M. Czerepak
Download PDF Download RIS Download Bibtex

Abstract

In this study, precipitation of Ca in Al-Mg alloys containing a trace of Ca during homogenization was investigated using a transmission electron microscope (TEM) and calculated phase diagrams. TEM result indicated that the Ca-based particles found in the examined sample are Ca7Mg7.5Si14. From the calculation of Scheil-Gulliver cooling, it was found that the Ca was formed as Al4Ca and C36 laves phases with Mg2Si and Al13Fe4 from other impurities phase during solidification. No Ca-Mg-Si ternary phase existed at the homogenization temperature in the calculated phase diagram. From the phase diagram of Al-Al4Ca-Mg2Si three-phase isothermal at 490℃, it was shown that Ca7Mg6Si14 phase co-exists with Al, Mg2Si and Al4Ca in the largest region and with only Al and Mg2Si in Al4Ca-poor regions. It was thought that the Ca7Mg6Si14 ternary phase was formed by the interaction between Mg2Si and Al4Ca considering that the segregation can occur throughout the entire microstructures.
Go to article

Bibliography

[1] J.R. Davis, ASM International, Aluminum and Aluminum Alloys, Materials Park 1993.
[2] G . Wu, K. Dash, M.L. Galano, K.A.Q. O’Reilly, Corros. Sci. 155, 97 (2019).
[3] B.H. Kim, S.H. Ha, Y.O. Yoon, H.K. Lim, S.K. Kim, D.H. Kim, Mater. Lett. 228, 108 (2018).
[4] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, T.W. Lee, S.H. Lim, S.K. Kim, Sci. Adv. Mater. 10, 697 (2018).
[5] D. Ajmera, E. Panda, Corros. Sci. 102, 425 (2016).
[6] S.H. Ha, J.K. Lee, S.K. Kim, Mater. Trans. 49, 1081 (2008).
[7] S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, T.W. Lee, S.H. Lim, S.K. Kim, Int. J. Metalcast. 13, 121 (2019).
[8] J.W. Jeong, J.S. Im, K. Song, M.H. Kwon, S.K. Kim, Y.B. Kang, S.H. Oh, Acta Mater. 61, 3267 (2013).
[9] K. Ozturk, L.Q. Chen, Z.K. Liu, J. Alloys Compd. 340, 199 (2002).
[10] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. Van Ende, Calphad 54, 35 (2016).
Go to article

Authors and Affiliations

Seong-Ho Ha
1
ORCID: ORCID
Young-Chul Shin
1
ORCID: ORCID
Bong-Hwan Kim
1
ORCID: ORCID
Young-Ok Yoon
1
ORCID: ORCID
Hyun-Kyu Lim
1
ORCID: ORCID
Sung-Hwan Lim
2
ORCID: ORCID
Shae K. Kim
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea
  2. Kangwon National University, Department of Advanced Materials Science and Engineering, Chuncheon 24341, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Multilayered composites based on light metals are promising materials in many applications. In the present work the 15-layered clad, composed of alternately stacked of Ti(Gr.1) and AA1050-H24 alloy sheets of 1 mm thick has been investigated with respect to determination of the kinetic of the Al3Ti phase growth. The defect-free multilayered composite was successfully formed by explosive welding technology. Then EXW samples were modified via annealing at the temperature of 600oC in closed die under pressure of 44 MPa for various times ranged between 1 and 10 h. Transmission and Scanning Electron Microscopy examinations were conducted in order to study the kinetic of the elements migration across the interfaces between the layers of the Al/Ti composite. The macro-scale observations of samples after EXW revealed that wavy interfaces were always formed in layers near the explosive charge. The increase of the distance from the top surface leads to flattening of the interface with very thin reaction layer between Al and Ti sheets. During annealing the kinetic of the Al3Ti phase growth is similar near all interfaces and coincides with data from other works. It was found that despite the loading after 10 h of annealing still only small part of Al-sheets undergoes dissolution and the width of the reaction layer does not exceed 5-8 µm.

Go to article

Authors and Affiliations

P. Petrzak
ORCID: ORCID
I. Mania
ORCID: ORCID
H. Paul
ORCID: ORCID
Ł. Maj
ORCID: ORCID
A. Gałka
Download PDF Download RIS Download Bibtex

Abstract

In the present investigation Ni particles were added in varying weight fractions (0.5, 1.0 and 1.5%) to AA6061 alloy during stir casting. To prepare Al-Ni intermetallic reinforced Aluminium Metal Matrix Composites (Al MMCs), as-cast samples were subjected to T6 treatment (Solutionization at 550°C followed by ageing at 2,4,6,8 and 10 hours). Base alloy was also subjected to T6 treatment for comparison purpose. Hardness of the samples were obtained using Vickers hardness test. Samples in the peak aged (T6) condition were subjected to metallographic examination. Influence of Ni particles on the hardness and grain refinement was investigated. X-ray Diffraction analysis of the Ni added samples revealed the presence of Al-Ni intermetallic phase formation in the peak aged (T6) Condition. Scanning Electron Microscope – Energy Dispersive X-Ray Spectroscopy analysis of composites in the peak aged (T6) condition were carried out to study the formation of the Al-Ni intermetallic phase. Effect of Al-Ni intermetallic phase on wear and friction behavior of the composite samples were studied and compared with that of the base alloy in the peak aged (T6) condition.
Go to article

Authors and Affiliations

J. Abuthakir
1
ORCID: ORCID
R. Subramanian
1
ORCID: ORCID
K. Somasundara Vinoth
2
ORCID: ORCID
G. Venkatesh
1
ORCID: ORCID
G. Suganya Priyadharshini
3
ORCID: ORCID
K. Krishnakumar
1
ORCID: ORCID

  1. Metallurgical Engineering, PSG College of Technology, India-641004
  2. Production Engineering, PSG College of Technology, India-641004
  3. Mechanical Engineering, Coimbatore Institute of Technology, India-641004

This page uses 'cookies'. Learn more