Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Industry 4.0 is expected to provide high quality and customized products at lower costs by increasing efficiency, and hence create a competitive advantage in the manufacturing industry. As the emergence of Industry 4.0 is deeply rooted in the past industrial revolutions, Advanced Manufacturing Technologies of Industry 3.0 are the precursors of the latest Industry 4.0 technologies. This study aims to contribute to the understanding of technological evolution of manufacturing industry based on the relationship between the usage levels of Advanced Manufacturing Technologies and Industry 4.0 technologies. To this end, a survey was conducted with Turkish manufacturers to assess and compare their manufacturing technology usage levels. The survey data collected from 424 companies was analyzed by machine learning approach. The results of the study reveal that the implementation level of each Industry 4.0 technology is positively associated with the implementation levels of a set of Advanced Manufacturing Technologies.
Go to article

Authors and Affiliations

Tuğba Sari
1

  1. Konya Food and Agriculture University, Department of Management Information Systems, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Nitrogen (N) is an essential macronutrient for the growth and development of plants, but excessive use of nitrogen fertiliser in agriculture can result in environmental pollution. As a preferred nitrogen form, ammonium (NH 4 +) is absorbed from the soil by the plants through ammonium transporters (AMTs). Therefore, it is important to explore AMTs to improve the efficiency of plant N utilisation. Here, we performed a comprehensive genome-wide analysis to identify and characterise the AMT genes in barley ( HvAMTs), which is a very important cereal crop. A total of seven AMT genes were identified in barley and further divided into two subfamilies ( AMT1 and AMT2) based on phylogenetic analysis. All HvAMT genes were distributed on five chromosomes with only one tandem duplication. HvAMTs might play an important role in plant growth, development, and various stress responses, as indicated by cis- regulatory elements, miRNAs, and protein interaction analysis. Further, we analysed the expression pattern of HvAMTs in various developmental plant tissues, which indicated that AMT1 subfamily members might play a major role in the uptake of NH 4 + from the soil through the roots in barley. Altogether, these findings might be helpful to improve the barley crop with improved nitrogen use efficiency, which is not only of great significance to the crop but also for land and water as it will reduce N fertiliser pollution in the surrounding ecosystem.
Go to article

Authors and Affiliations

Umesh K. Tanwar
1
ORCID: ORCID
Ewelina Stolarska
1
ORCID: ORCID
Ewelina Paluch-Lubawa
1
ORCID: ORCID
Elżbieta Rudy
1
ORCID: ORCID
Ewa Sobieszczuk-Nowicka
1
ORCID: ORCID

  1. Adam Mickiewicz University, Faculty of Biology, Department of Plant Physiology, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland

This page uses 'cookies'. Learn more