Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Date
  • Typ

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the context of resource utilization, the applications of waste biomass have attracted increasing attention.Previous studies have shown that forming biochar by heat treatment of sludge could replace the traditional sludge disposal methods, and sludge biochar is proved to be efficient in wastewater treatment. In this work, the pyrolysis, hydrothermal carbonization and microwave pyrolysis methods for preparing sludge biochar were reviewed, and the effects of different modification methods on the performance of sludge biochar in the synthesis process were comprehensively analyzed. This review also summarized the risk control of heavy metal leaching in sludge biochar, increasing the pyrolysis temperature and use of the fractional pyrolysis or co-pyrolysis were usually effectively meathods to reduce the leaching risk of heavy metal in the system, which is crucial for the wide application of sludge biochar in sewage treatment. At the same time, the adsorption mechanism of sludge biochar and the catalytic mechanism as the catalytic material in AOPs reaction, the process of radical and non-radical pathway and the possible impacts in the sludge biochar catalytic process were also analyzed in this paper
Go to article

Bibliography

  1. Antunes, E., Jacob, M. V., Brodie, G. & Schneider, P. A. (2018).Microwave pyrolysis of sewage biosolids: Dielectric properties, microwave susceptor role and its impact on biochar properties. Journal of Analytical and Applied Pyrolysis, 129, 93-100. DOI:10.1016/j.jaap.2017.11.023.
  2. Bogacki, J.P. & Al-Hazmi, H. (2017). Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes. Archives of Environmental Protection, 43 (3), pp. 24–31. DOI:10.1515/aep-2017-002
  3. Borgulat, A., Zgórska. A. & Głodniok, M. (2022). Comparison of different municipal sewage sludge products for potential ecotoxicity. Archives of Environmental Protection, 48 (1), pp. 92–99. DOI:10.24425/aep.2022.140548
  4. Chandrasekaran, S., Basak, T. & Srinivasan, R. (2013).Microwave heating characteristics of graphite based powder mixtures. International Communications in Heat and Mass Transfer, 2013, 48, 22-27. DOI: 10.1016/j.icheatmasstransfer.2013.09.008.
  5. Chen, G., Tian, S., Liu, B., Hu, M., Ma, W., Li, X. (2020). Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste. Waste Management, 103, 268-275. DOI:10.1016/j.wasman.2019.12.031.42.
  6. Cherif Lahimer, M.; Ayed, N.; Horriche, J. & Belgaied, S. (2017). Characterization of plastic packaging additives: Food contact, stability and toxicity. Arabian Journal of Chemistry, 10, S1938-S1954. DOI: 10.1016/j.arabjc.2013.07.022.
  7. Danni, L., Rui, S., Li, X, J., Jing, G., Yu, Y, Z., Hao, R, Y. & Yong, C.A. (2020). review on the migration and transformation of heavy metals in the process of sludge pyrolysis. Resources, Conservation & Recycling, 185, 106452. DOI:10.1016/j.resconrec.2022.106452.
  8. Devi, P. & Saroha, A. K. (2014). Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour Technology, 162, 308-315. DOI:10.1016/j.biortech.2014.03.093.
  9. Dong, Q., Zhang, S., Wu, B., Pi, M., Xiong, Y. & Zhang, H. (2019). Co-pyrolysis of Sewage Sludge and Rice Straw: Thermal Behavior and Char Characteristic Evaluations. Energy & Fuels, 34 (1), 607-615. DOI: 0.1021/acs.energyfuels.9b03800.
  10. Duan, D., Chen, D., Huang, L., Zhang, Y., Zhang, Y., Wang, Q., Xiao, G., Zhang, W., Lei, H. & Ruan, R. (2021). Activated carbon from lignocellulosic biomass as catalyst: A review of the applications in fast pyrolysis process. Journal of Analytical and Applied Pyrolysis, 158, 105246. DOI: 10.1016/j.jaap.2021.105246.
  11. Duan, X., Sun, H., Shao, Z. & Wang, S. (2018). Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 224, 973-982. DOI:10.1016/j.apcatb.2017.11.051.
  12. Fang, G., Li, J., Zhang, C., Qin, F., Luo, H., Huang, C., Qin, D. & Ouyang, Z. (2022). Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar. Environmental Pollution, 300, 118939. DOI: 10.1016/j.envpol.2022.118939.
  13. Gan, Q., Hou, H., Liang, S., Qiu, J., Tao, S., Yang, L., Yu, W., Xiao, K., Liu, B., Hu, J., Wang, Y. & Yang, J. (2020). Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol. Science of The Total Environment, 725, 138299. DOI: 0.1016/j.scitotenv.2020.138299.
  14. Harvey, O. R., Herbert, B. E., Rhue, R. D. & Kuo, L. J. (2011). Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environmental Science& Technology, 45 (13), 5550-6. DOI:10.1021/es104401h.
  15. Issaka, E., Amu-Darko, J. N., Yakubu, S., Fapohunda, F. O., Ali, N. & Bilal, M. (2022). Advanced catalytic ozonation for degradation of pharmaceutical pollutants-A review. Chemosphere, 289, 133208. DOI:10.1016/j.chemosphere.2021.133208.
  16. Jia, H, Z., Zhao, S., Zhou, X, H., Qu, C, T., Fan, D, D. & Wang, C, Y. (2017). Low-temperature pyrolysis of oily sludge: roles of Fe/Al-pillared bentonites. Archives of Environmental Protection, 43 (3), pp. 82–90. DOI: 0.1515/aep-2017-002.
  17. Jin, Z., Jun, W, J., Min, Y. W., Ravi, N., Yan, J, L., Yu, B., Man, Xin, Q, L., Ming, H, W., Christie, P., Yan, Z., Cheng, F, S. & Sheng D, S. (2020). Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility. Environmental Research, 191,110304. DOI:10.1016/j.envres.2020.110034.
  18. Kappler, A., Wuestner, M. L., Ruecker, A., Harter, J., Halama, M. & Behrens, S. (2014). Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environmental Science & Technology Letters, 1 (8), 339-344. DOI:10.1021/ez5002209.
  19. Kim, E., Jung, C., Han, J., Her, N., Park, C. M., Jang, M., Son, A. & Yoon, Y. (2016). Sorptive removal of selected emerging contaminants using biochar in aqueous solution. Journal of Industrial and Engineering Chemistry, 36, 364-371. DOI:10.1016/j.jiec.2016.03.004.
  20. Li, H., Dong, X., da Silva, E, B., de Oliveira, L, M., Chen, Y. & Ma, L.Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. DOI:10.1016/j.chemosphere.2017.03.072.
  21. Li, L., Cao, W., Wang, G., Peng, P., Liu, S., Jin, H., Wei, W. & Guo, L. (2022). Experimental and kinetic study of heavy metals transformation in supercritical water gasification of oily sludge. Journal of Cleaner Production, 373, 133898. DOI:10.1016/j.jclepro.2022.133898.
  22. Li, W, J., Jun, M., Yu, L, Z. Ghulam, H, B., Tida, G., Haibo, Z., Zhang, H. B., Li, Z. T., Yi, J. Yu. & Sheng, D. S. (2022). Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals. Environmental Pollution, 302, 119092. DOI:10.1016\/j.envpol.2022.119092
  23. Li, Z., Deng, H., Yang, L., Zhang, G., Li, Y. & Ren, Y. (2018). Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge. Bioresource Technology, 256, 216-223. DOI:10.1016/j.biortech.2018.02.013.
  24. Ma, J., Zhou, B., Zhang, H. & Zhang, W. (2020), Fe/S modified sludge-based biochar for tetracycline removal from water. Powder Technology, 364, 889-900. DOI:10.1016/j.powtec.2019.10.107.
  25. Smol, M., Kulczycka, J., Lelek, Ł., Gorazda, K. & Wzorek, Z. (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Archives of Environmental Protection, 46(2), pp. 42–52. DOI:10.24425/aep.2020.13347.
  26. Mian, M. M., Liu, G., Fu, B. & Song, Y. (2019). Facile synthesis of sludge-derived MnOx-N-biochar as an efficient catalyst for peroxymonosulfate activation. Applied Catalysis B: Environmental, 255, 117765. DOI:10.1016/j.apcatb.2019.117765.
  27. Nie, M., Yang, Y., Zhang, Z., Yan, C., Wang, X., Li, H. & Dong, W. (2014). Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chemical Engineering Journal, 246, 373-382. DOI:10.1016/j.cej.2014.02.047.
  28. Oh, S. Y. & Seo, Y. D. (2016). Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms. Environment Science Pollution Research International, 23 (2), 951-61. DOI:10.1007/s11356-015-4201-8
  29. Peng, B., Liu, Q., Li, X., Zhou, Z., Wu, C. & Zhang, H. (2022). Co-pyrolysis of industrial sludge and rice straw: Synergistic effects of biomass on reaction characteristics, biochar properties and heavy metals solidification. Fuel Processing Technology, 230.107211. DOI:10.1016/j.fuproc.2022.107211.
  30. Piekarski, J., Dąbrowski, T., Dąbrowski, J. & Ignatowicz, K. (2021). Preliminary studies on odor removal in the adsorption process on biochars produced form sewage sludge and beekeeping waste. Archives of Environmental Protection, 47(2), pp.20–28. DOI:10.24425/aep.2021.137275
  31. Pulka, J., Wiśniewski, D., Gołaszewski, J. & Białowiec, A. (2016). Is the biochar produced from sewage sludge a good quality solid fuel. Archives of Environmental Protection, 42 (4), pp. 125–134. DOI:10.1515/aep-2016-0043
  32. Qiu, B., Shao, Q., Shi, J., Yang, C. & Chu, H. (2022). Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology, 300, 12195. DOI:10.1016/j.seppur.2022.121925
  33. Shi, Q, D., Zheng, Y., Du, Y., Li, L., Yang, S., Zhang, G., Du, L., Wang, G., Cheng, M. & Liu, Y. (2022). The application of transition metal-modified biochar in sulfate radical based advanced oxidation processes. Environmental Research, 212 (Pt B), 113340. DOI:10.1016/j.envres.2022.113340.
  34. Streit, A. F. M., Cortes, L. N., Druzian, S. P., Godinho, M., Collazzo, G. C. Perondi, D. & Dotto, G. L. (2019). Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions. Science Total Environmental, 660, 277-287. DOI:10.1016/j.scitotenv.2019.01.027
  35. Szarek, Ł. (2020). Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes. Archives of Environmental Protection, 46 (3), pp. 49–59. DOI:10.24425/aep.2020.134535
  36. Tang, J., Lv, H., Gong, Y. & Huang, Y. (2015). Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresource Technology, 196, 355-363. DOI:10.1016/j.biortech.2015.07.047.
  37. Wallace, C. A., Afzal, M. T. & Saha, G. C. (2019). Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresources and Bioprocessing, 6 (1).8. DOI:10.1016/j.jaap.2015.01.010.
  38. Wang, C., Zhang, X., Wang, W., Sun, J., Mao, Y., Zhao, X. & Song, Z. (2022). A stepwise microwave synergistic pyrolysis approach to produce sludge-based biochars: Optimizing and mechanism of heavy metals immobilization. Fuel, 314. (Apr.15) – 122770. DOI:10.1016/j.fuel.2021.122770.
  39. Wang, H., Guo, W., Liu, B., Si, Q., Luo, H., Zhao, Q. & Ren, N. (2020). Sludge-derived biochar as efficient persulfate activators: Sulfurization-induced electronic structure modulation and disparate nonradical mechanisms. Applied Catalysis B: Environmental, 279, 119361. DOI:10.1016/j.apcatb.2020.119361.
  40. Wang, J., Cai, J., Wang, S., Zhou, X., Ding, X., Ali, J., Zheng, L., Wang, S., Yang, L., Xi, S., Wang, M. & Chen, Z. (2022). Biochar-based activation of peroxide: multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species. Chemical Engineering Journal, 428, 131233. DOI:10.1016/j.cej.2021.131233
  41. Wang, J. & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502-1517. DOI:10.1016/j.cej.2017.11.059.
  42. Wang, S. & Wang, J. (2019). Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater. Chemical Engineering Journal, 356, pp. 350-358. DOI:10.1016/j.cej.2018.09.062
  43. Wang, X., Wei, Ch. Ch., Li, Z., Song, Y., Li, C. & Wang, Y. (2022). Co-pyrolysis of sewage sludge and food waste digestate to synergistically improve biochar characteristics and heavy metals immobilization. Waste Management, 141, 231-239. DOI:10.1016/j.wasman.2022.02.001.
  44. Wu, W., Zhu, S., Huang, X., Wei, W. & Ni, B, J. (2021). Mechanisms of persulfate activation on biochar derived from two different sludges: Dominance of their intrinsic compositions. Journal Hazard Materials, 408, 124454. DOI:10.1016/j.jhazmat.2020.124454.
  45. Xin, Z., Bao, W. Z., Hui, L. & Liu, J. L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals insewage sludge biochars Environmental Technology & Innovation, 26, 102288. DOI:10.1016/j.eti.2022.102288.
  46. Xu, L., Wu, C., Liu, P., Bai, X., Du, X., Jin, P., Yang, L., Jin, X., Shi, X. & Wang, Y. (2020). Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants. Chemical Engineering Journal, 387, 124065. DOI:10.1016/j.cej.2020.124065.
  47. Yan, L., Liu, Y., Zhang, Y., Liu, S., Wang, C., Chen, W., Liu, C., Chen, Z. & Zhang, Y. (2020). ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresource Technology, 297, 122381. DOI:10.1016/j.biortech.2019.122381.
  48. Yang, T, S., Zhang, Y., Cao, X, Q., Zhang, J., Kan, Y, J., Wei, B., Zhang, Y. Z. M., Wang, Z. Z., Jiao, Z., Zhang, X. X. & Li, R. (2022). Water caltrop-based carbon catalysts for cooperative adsorption and heterogeneous activation of peroxymonosulfate for tetracycline oxidation via electron transfer and non-radical pathway. Applied Surface Science, 606, 164823. DOI:10.1016/j.apsusc.2022.154823.
  49. Ye, G. R., Zhou, J. H., Huang, R. T., Ke, W. J., Peng, Y. C., Zhou, Y. X., Weng, Y., Ling, C. T. & Pan, W. X. (2022). Magnetic sludge-based biochar derived from Fenton sludge as an efficient heterogeneous Fenton catalyst for degrading Methylene blue. Journal of Environmental Chemical Engineering, 10, 107242. DOI:10.1016/j.jece.2022.107242.
  50. Yu, H., Zhang, D., Gu, L., Wen, H. & Zhu, N. (2022). Coupling sludge-based biochar and electrolysis for conditioning and dewatering of sewage sludge: Effect of char properties. Environmental Science and Ecotechnology, 2022, 214 (Pt 3), 113974. DOI:10.1016/j.envres.2022.113974.
  51. Yu, J., Tang, L., Pang, Y., Zeng, G., Wang, J., Deng, Y., Liu, Y., Feng, H., Chen, S. & Ren, X. (2019). Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chemical Engineering Journal, 364, 146-159. DOI:10.1016/j.cej.2019.01.163.
  52. Yu, J., Zhu, Z., Zhang, H., Shen, X., Qiu, Y., Yin, D. & Wang, S. (2020). Persistent free radicals on N-doped hydrochar for degradation of endocrine disrupting compounds. Chemical Engineering Journal, 398, 125538. DOI:10.1016/j.cej.2020.125538.
  53. Zeng, H. P., Li, J. X., Xu, J. X., Qi, W., Hao, R. X., Gao, G. W., Lin, D., Li, D. & Zhang, J. (2022). Preparation of magnetic N-doped iron sludge based biochar and itspotential for persulfate activation and tetracycline degradation. Journal of Cleaner Production, 378, 134519. DOI:10.1016/j.jclepro.2022.134519.
  54. Zhang, A., Li, X., Xing, J. & Xu, G. (2020). Adsorption of potentially toxic elements in water by modified biochar: A review. Journal of Environmental Chemical Engineering, 8 (4), 104196. DOI:10.1016/j.jece.2020.104196.
  55. Zhang, H., Xue, G., Chen, H. & Li, X. (2018). Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere, 191, pp. 64-71. DOI:10.1016/j.chemosphere.2017.10.026.
  56. Zhang, L., Pan, J., Liu, L., Song, K. & Wang, Q. (2019). Combined physical and chemical activation of sludge-based adsorbent enhances Cr(Ⅵ) removal from wastewater. Journal of Cleaner Production, 238,11767. DOI:10.1016/j.jclepro.2019.117904
  57. Zhang, S., Lv, J., Han, R. & Zhang, S. (2022). Superoxide radical mediates the transformation of tetrabromobisphenol A by manganese oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129807. DOI:10.1016/j.colsurfa.2022.129807.
  58. Zhang, Y., Jiang, Q., Xie, W., Wang, Y. & Kang, J. (2019). Effects of temperature, time and acidity of hydrothermal carbonization on the hydrochar properties and nitrogen recovery from corn stover. Biomass and Bioenergy, 122, 175-182. DOI:10.1016/j.biombioe.2019.01.035.
Go to article

Authors and Affiliations

Ming Yi Lv
1
Hui Xin Yu
1
Xiao Yuan Shang

  1. Shenyang University of Chemical Technology, China
Download PDF Download RIS Download Bibtex

Abstract

Advanced automotive fleet repair facility wastewater treatment was investigated with Zero-Valent Iron/Hydrogen Peroxide (Air/ZVI/H2O2) process for different process parameters: ZVI and H2O2 doses, time, pH. The highest Chemical Oxygen Demand (COD) removal efficiency, 76%, was achieved for ZVI/H2O2 doses 4000/1900 mg/L, 120 min process time, pH 3.0. COD decreased from 933 to 227 mg/L. In optimal process conditions odor and color were also completely removed. COD removal efficiency was increasing with ZVI dose. Change pH value below and over 3.0 causes a rapid decrease in the treatment effectiveness. The Air/ZVI/H2O2 process kinetics can be described as d[COD]/dt = −a [COD]tm, where ‘t’ corresponds with time and ‘a’ and ‘m’ are constants that depend on the initial reagent concentrations. H2O2 influence on process effect was assessed. COD removal could be up to 40% (560 mg/L) for Air/ZVI process. The FeCl3 coagulation effect was also evaluated. The best coagulation results were obtained for 700 mg/L Fe3+ dose, that was slightly higher than dissolved Fe used in ZVI/H2O2 process. COD was decreased to 509 mg/L.

Go to article

Authors and Affiliations

Jan Paweł Bogacki
Hussein Al-Hazmi

This page uses 'cookies'. Learn more