Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents a synthetic analysis of the crude oil market in Poland. As of today, this safety is provided mainly on the basis of native lignite and hard coal resources. However, the analysis of the hard coal market conducted by the authors indicates that the carried out mining restructuring (among others) led to an excessive reduction of mining volume and employment level in the hard coal mining sector. This led to a precedent situation when Poland became an importer of this energy carrier. In addition, the European Union’s requirements for greenhouse gas emissions must be taken into account. In connection with the above, it is necessary to search for new energy sources or technologies that enable hard coal to meet the requirements. It is possible to apply the so-called clean coal technologies that allow the greenhouse gas emissions generated during coal combustion to be reduced. As of today, they are not used on a mass scale, because the use of this type of technology involves additional financial expenses. However, taking into account that technologies have been growing faster and faster, are modernized in a shorter time, making a breakthrough discovery took hundreds of years, now it is often a few months, clean coal technologies can become the optimal solution in the near future. It is also necessary to diversify the sources of obtaining imported energy carriers.

The article describes coal and crude oil in terms of their mutual substitution. The article is a continuation of research conducted by the authors. Previous publications presented considerations on analogous topics related to natural gas and renewable energy sources. The crude oil market in Poland was analyzed and forecasts for oil extraction and the demand in the world and Poland by 2023 were presented. The SARIMA model was also created. The model made it possible to obtain oil an prices forecast.

Go to article

Authors and Affiliations

Aurelia Rybak
ORCID: ORCID
Anna Manowska
Download PDF Download RIS Download Bibtex

Abstract

The article presents the possibility of using the Cobb-Douglas production function for planning in a turbulent environment. A case study was carried out – the Cobb-Douglas function was used to examine the condition of the Polish hard coal mining industry and the progress which has been made after undertaking certain activities aimed at increasing the competitiveness of coal companies over recent years. Only the correct and confirmed identification of the causes of irregularities in the production process can allow for the introduction of effective remedies. The effectiveness of the solutions proposed by the author has been confirmed thanks to the simulation during which the impact of the proposed production strategy on the parameters of the CD function was examined. Three variants of production functions models were created and production productivity rates and marginal substitution rates were determined. The results enabled the verification of the progress of restructuring as well as identification of the origin of the observed problems and comparison of the current state with the results of analyses carried out in previous years. Scenarios of possible trend developments for the factors introduced into the function model in order to present remedial measures that could improve the process of hard coal extraction were created. The scenarios were created using the ARIMA class models. Which scenario is the most favourable was determined. A computer program, created by the author, for optimising the level and use of labor resources at the level of the entire coal company has been presented.

Go to article

Authors and Affiliations

Aurelia Rybak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Time series models have been used to extract damage features in the measured structural response. In order to better extract the sensitive features in the signal and detect structural damage, this paper proposes a damage identification method that combines empirical mode decomposition (EMD) and Autoregressive Integrated Moving Average (ARIMA) models. EMD decomposes nonlinear and non-stationary signals into different intrinsic mode functions (IMFs) according to frequency. IMF reduces the complexity of the signal and makes it easier to extract damage-sensitive features (DSF). The ARIMA model is used to extract damage sensitive features in IMF signals. The damage sensitive characteristic value of each node is used to analyze the location and damage degree of the damaged structure of the bridge. Considering that there are usually multiple failures in the actual engineering structure, this paper focuses on analysing the location and damage degree of multi-damaged bridge structures. A 6-meter-long multi-destructive steel-whole vibration experiment proved the state of the method. Meanwhile, the other two damage identification methods are compared. The results demonstrate that the DSF can effectively identify the damage location of the structure, and the accuracy rate has increased by 22.98% and 18.4% on average respectively.
Go to article

Authors and Affiliations

Weijia Lu
1
ORCID: ORCID
Jiafan Dong
1
ORCID: ORCID
Yuheng Pan
1
ORCID: ORCID
Guoya Li
1
ORCID: ORCID
Jinpeng Guo
1
ORCID: ORCID

  1. Tianjin Chengjian University, Computer and Information Engineering Department, Tianjin, China

This page uses 'cookies'. Learn more