Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Effects of solution treatment on room temperature mechanical properties were studied in cast AZ91 (Mg-9%Al-1%Zn-0.2%Mn) and AZ91-0.5%Ca alloys. In as-cast state, the Ca addition contributed to the suppression of discontinuous β phase precipitation and the formation of Al2Ca phase. After solution treatment, the AZ91 alloy had only a small amount of Al8Mn5 particles, while β and Al2Ca phases were still present in the Ca-containing alloy. In as-cast state, the AZ91-0.5%Ca alloy showed better yield strength and hardness than the AZ91 alloy. The solution treatment increased the elongation in both alloys, which eventually led to the increase in ultimate tensile strength. The solution treatment resulted in a marked decrease in yield strength and hardness in the AZ91 alloy, whereas the decrements in those values were relatively negligible in the Ca-containing alloy due to the residual phases and solution hardening effect of Ca.

Go to article

Authors and Affiliations

Joong-Hwan Jun
Download PDF Download RIS Download Bibtex

Abstract

AZ91 alloy was cast in a steel mould pre-exposed to three different temperatures: -196 ºC, 20 ºC and 650 ºC. The aim of the study was to determine the difference in the microstructure and mechanical properties between the castings formed in a cold mould and those solidifying under near-equilibrium conditions in a mould pre-heated to 650 ºC. Solidification at a low temperature led to dispersion of the structure elements as well as supersaturation of the solid solution of aluminium in magnesium. The heat treatment results indicate that the alloy solidified in the mould pre-exposed to 20 ºC can be successfully aged (heat treated to the T5 temper). It was found that the effect of the ageing process (T5 temper) was greater than the effect of the microstructure fragmentation, which was due to rapid solidification. The ageing results were assessed by comparing the microstructure and mechanical properties of AZ91 brought to the T5 condition with those obtained for the material in the T6 condition.
Go to article

Authors and Affiliations

A. Dziadoń
T. Bucki
P. Porzucek
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study was to investigate the dependence of the room temperature tensile properties on the volume fraction of discontinuous precipitates (DPs) in a cast AZ91 magnesium alloy. In order to obtain various volume fractions of DPs, the solution-treated alloy was aged at 428 K for up to 48 h. The volume fraction of DPs increased from 0% to 72% with an increase in the aging time up to 24 h; for aging times longer than 24 h, discontinuous precipitation was substantially inhibited owing to the occurrence of significant continuous precipitation within the α-(Mg) grains. YS and UTS of the alloy increased with the volume fraction of DPs, whereas the elongation showed a reverse trend. A relatively rapid change in the tensile properties with increasing volume fraction of DPs up to ~40% was noted, which would be due to the reduction of the effective α grain size in response to the formation of DPs along the grain boundaries.

Go to article

Authors and Affiliations

Joong-Hwan Jun
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of gas pressure on the shape and size of the AZ91 alloy powder produced by using the gas atomization method was investigated experimentally. Experiments were carried out at 820°C constant temperature in 2-mm nozzle diameter and by applying 4 different gas pressures (0.5, 1.5, 2.5 and 3.5 MPa). Argon gas was used to atomize the melt. Scanning electron microscope (SEM) to determine the shape of produced AZ91 powders, XRD, XRF and SEM-EDX analysis to determine the phases forming in the internal structures of the produced powders and the percentages of these phases and a laser measuring device for powder size analysis were used. Hardness tests were carried out to determine the mechanical properties of the produced powders. The general appearances of AZ91 alloy powders produced had general appearances of ligament, acicular, droplet, flake and spherical shape, but depending on the increase in gas pressure, the shape of the powders is seen to change mostly towards flake and spherical. It is determined that the finest powder was obtained at 820°C with 2 mm nozzle diameter at 3.5 MPa gas pressure and the powders had complex shapes in general.

Go to article

Authors and Affiliations

M. Akkaş
T. Çetin
M. Boz
Download PDF Download RIS Download Bibtex

Abstract

Plates of AZ91 cast magnesium alloy with a thickness of 3.5 mm were butt-welded using a laser power of 2000 W and helium as the shielding gas. The effect of the welding speed on the weld cross-sectional geometry and porosity was determined by microscopic analysis. It was found that to avoid the formation of macropores, welding should be carried out at a speed of 3.4 m/min or higher. Non-equilibrium solidification of the laser-melted metal causes fragmentation of the weld microstructure. Joints that were welded at optimal laser processing parameters were subjected to structural observations using optical and scanning microscopy and to mechanical tests. The mechanical properties were determined through Vickers hardness measurements in the joint cross-section and through tensile testing. The results indicate that the hardness in the fusion zone was about 20 HV (30%) higher than that of the base material. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens fractured outside the fusion zone.

Go to article

Authors and Affiliations

A. Dziadoń
ORCID: ORCID
E. Musiał
Download PDF Download RIS Download Bibtex

Abstract

Plates of AZ91 magnesium alloy were butt-welded using a CO2 laser. The non-equilibrium solidification of the laser-melted metal caused fragmentation of the weld microstructure as well as the supersaturation of a solid solution of aluminium in magnesium, which enabled the T5 ageing of the weld. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens, both as-welded and post-weld T5 aged, fractured outside it. During the ageing of the supersaturated joint, which involved heat treating it to the T6 condition, the weld was the region where discontinuous precipitation was observed and this was the location of fracture in the tensile specimens. Thus, the strength properties of welded, supersaturated and aged AZ91 were much worse than when the non-welded material was T6 tempered.
Go to article

Authors and Affiliations

A. Dziadoń
1
ORCID: ORCID
E. Musiał
1

  1. Kielce University of Technology, Metals Science and Materials Technologies, 7 Tysiąclecia Państwa Polskiego Av., 25-314, Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, AZ91 Magnesium alloy is produced by cold chamber high pressure die casting (HPDC) method. Different combinations of the cold chamber HPDC process parameters were selected as; in-mold pressure values of 1000 bar and 1200 bar, the gate speed of 30 m/s and 45 m/s, the casting temperatures of 640°C and 680°C. In addition, the test samples were produced by conventional casting method. Tensile test, hardness test, dry sliding wear test and microstructure analysis of samples were performed. The mechanical properties of the samples produced by the cold chamber HPDC and the conventional casting method were compared. Using these parameters; the casting temperature 680°C, in-mold pressure 1000 bar and the gate speed 30 m/s, the highest tensile strength and the hardness value were obtained. Since the cooling rate in the conventional casting method is slower than that of the cold chamber HPDC method, high mechanical properties are obtained by the formation of a fine-grained structure in the cold chamber HPDC method. In dry sliding wear tests, it was observed that there was a decrease in friction coefficient and less material loss with the increase of hardness values of the sample produced by the cold chamber HPDC method.

Go to article

Authors and Affiliations

Levent Urtekin
Recep Arslan
Fatih Bozkurt
Ümit Er

This page uses 'cookies'. Learn more