Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Bibliography

[1] U. Riaz, I. Shabib, W. Haider, J. Biomed. Mater. Res. Part B. 107 (6), 1970-1996 (2019). DOI: https://doi.org/10.1002/jbm.b.34290
[2] M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39 (9-10), 851-865 (2008). DOI: https://doi.org/10.1007/s00170-007-1279-2
[3] H . Furuya, N. Kogiso, S. Matunaga, K. Senda, Mater. Sci. Forum. 350, 341-348 (2000). DOI: https://doi.org/10.4028/www.scientific.net/MSF.350-351.341
[4] S.N. Mathaudhu, E.A. Nyberg, Magnesium Alloys in U.S. Military Applications: Past, Current and Future Solutions. In: S.N. Mathaudhu, A.A. Luo, N.R. Neelameggham, E.A. Nyberg, W.H. Sillekens (eds) Essential Readings in Magnesium Technology. Springer, Cham (2016). DOI: https://doi.org/10.1007/978-3-319-48099-2_10
[5] V.V. Ramalingam, P. Ramasamy, M. Das Kovukkal, G. Myilsamy, Met. Mater. Int. 26 (4), 409-430 (2020). DOI: https://doi.org/10.1007/s12540-019-00346-8
[6] K.H. Ho, S.T. Newman, Int. J. Mach. Tools Manuf. 43 (13), 1287- 1300 (2003). DOI: https://doi.org/10.1016/S0890-6955(03)00162-7
[7] M. Hourmand, A.A.D. Sarhan, M. Sayuti, Int. J. Adv. Manuf. Technol. 91 (1-4), 1023-1056, (2017). DOI: https://doi.org/10.1007/s00170-016-9671-4
[8] B. Nahak, A. Gupta, Manuf. Rev. 6 (2), 2019. DOI: https://doi.org/10.1051/mfreview/2018015
[9] S.S. Sidhu, A. Batish, S. Kumar, J. Reinf. Plast. Compos. 32 (17), 1310-1320 (2013). DOI: https://doi.org/10.1177/0731684413489366
[10] L . Arunkumar, B.K. Raghunath, Int. J. Eng. Technol. 5 (5), 4332- 4338 (2013).
[11] Sohil Parsana, Nishil Radadia, Mohak Sheth, Nisarg Sheth, Vimal Savsani, N. Eswara Prasad, T. Ramprabhu, Arch. Civ. Mech. Eng. 18 (3), 799-817 (2018). DOI: https://doi.org/10.1016/j.acme.2017.12.007
[12] S. Santosh, S. Javed Syed Ibrahim, P. Saravanamuthukumar, K. Rajkumar, K.L. Hari Krishna, Appl. Mech. Mater. 787, 406- 410 (2015). DOI: https://doi.org/10.4028/www.scientific.net/AMM.787.406
[13] M. Hourmand, A.A.D. Sarhan, S. Farahany, M. Sayuti, Int. J. Adv. Manuf. Technol. 101 (9-12), 2723-2737 (2019). DOI: https://doi.org/10.1007/s00170-018-3130-3
[14] R. Ranjith, P. Tamilselvam, T. Prakash, C. Chinnasamy, Mater. Manuf. Process. 34 (10), 1120-1128 (2019). DOI: https://doi.org/10.1080/10426914.2019.1628258
[15] S. Tripathy, D.K. Tripathy, Mach. Sci. Technol. 21 (3), 362-384 (2017). DOI: https://doi.org/10.1080/10910344.2017.1283957
[16] S. Suresh Kumar, M. Uthayakumar, S. Thirumalai Kumaran, P. Parameswaran, E. Mohandas, G. Kempulraj, B.S. Ramesh Babu, S.A. Natarajan, J. Manuf. Process. 20, 33-39 (2015). DOI: https://doi.org/10.1016/j.jmapro.2015.09.011
[17] P. Senthil, S. Vinodh, A.K. Singh, Int. J. Mach. Mach. Mater. 16 (1) 80-94 (2014). DOI: https://doi.org/10.1504/IJMMM.2014.063922
[18] K. Shunmugesh, K. Panneerselvam, Arch. Metall. Mater. 62 (3), 1803-1812 (2017). DOI: https://doi.org/10.1515/amm-2017-0273
[19] S.K. Ramuvel, S. Paramasivam, J. Mater. Res. Technol. 9 (3), 3885- 3896 (2020). DOI: https://doi.org/10.1016/j.jmrt.2020.02.015
[20] A.K. Sahu, S.S. Mahapatra, S. Chatterjee, J. Thomas, Mater. Today:. Proc. 5 (9), 19019-19026 (2018). DOI: https://doi.org/10.1016/j.matpr.2018.06.253
[21] M. Eswara Krishna, P.K. Patowari, Mater. Manuf. Processes. 29 (9), 1131-1138 (2014). DOI: https://doi.org/10.1080/10426914.2014.930887
[22] A.S. Gill, S. Kumar, Arabian J. Sci. Eng. 43 (3), 1499-1510 (2017). DOI: https://doi.org/10.1007/s13369-017-2960-x
[23] P.K Rout, B. Surekha, P.C. Jena, G.N. Arko, Mater. Today: Proc. 26 (2), 2379-2387 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.02.510
[24] M. Gostimirovic, P. Kovac, M. Sekulic, B. Skoric, J. Mech. Sci. Technol. 26 (1), 173-179 (2012). DOI: https://doi.org/10.1007/s12206-011-0922-x
[25] M. Ghoreishi, C. Tabari, Mater. Manuf. Processes, 22 (7-8), 833- 841 (2007). DOI: https://doi.org/10.1080/10426910701446812
[26] M. Kiyak, B.E. Aldemir, E. Altan, Int. J. Adv. Manuf. Technol. 79 (1-4), 513-518 (2015). DOI: https://doi.org/10.1007/s00170-015-6840-9
[27] B.M. Schumacher, J. Mater. Process. Technol. 149 (1-3), 376-381 (2004). DOI: https://doi.org/10.1016/j.jmatprotec.2003.11.060
[28] L . Srinivasan, K. Mohammad Chand, T. Deepan Bharathi Kannan, P. Sathiya, S. Biju, Trans. Indian Inst. Met. 71 (2), 373-382 (2018). DOI: https://doi.org/10.1007/s12666-017-1166-y
[29] S. Tripathy, D.K. Tripathy, Eng. Sci. Technol. Int. J. 19 (1), 62-70 (2016). DOI: https://doi.org/10.1016/j.jestch.2015.07.010
Go to article

Authors and Affiliations

A. Tajdeen
1
ORCID: ORCID
A. Megalingam
1
ORCID: ORCID

  1. Bannari Amman Institute of Technology, Department of Mechanical Engineering, Sathyamangalam, Erode-638401, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the possibility of improving the scratch resistance of the AZ91 magnesium alloy by applying a WCCoCr coating using the Air Plasma Spraying (APS) method. The coating thickness ranged from 140 to 160 m. Microstructural studies of the AZ91 magnesium alloy were performed. The chemical composition of the WCCoCr powder was investigated. The quality of the bond at the substrate–coating interface was assessed and a microanalysis of the chemical composition of the coating was conducted. The scratch resistance of the AZ91 alloy and the WCCoCr coating was determined. The scratch resistance of the WCCoCr powder-based coating is much higher than the AZ91 alloy, as confirmed by scratch geometry measurements. The scratch width in the coating was almost three times smaller compared to the scratch in the substrate. Observations of the substrate–coating interface in the scratch area indicate no discontinuities. The absence of microcracks and delamination at the transition of the scratch from the substrate to the coating indicates good adhesion. On the basis of the study, it was found that there was great potential to use the WCCoCr powder coating to improve the abrasion resistance of castings made from the AZ91 alloy.
Go to article

Bibliography

[1] Wanhill, R.J.H. (2017). Carbon fibre polymer matrix structural composites. Aerospace Materials and Material Technologies. 1, 309-341. https://doi.org/10.1007/978-981-10-2134-3_14.
[2] Dziadoń, A. & Mola, R. (2013). Magnesium – directions of shaping mechanical properties. Obróbka plastyczna Metali. XXIV(4). (in Polish).
[3] Mordike, B.L. & Ebert, T. (2001). Magnesium: Properties – application – potential. Materials Science and Engineering. 302(1), 37-45. DOI: 10.1016/S0921-5093(00)01351-4.
[4] Wang, G.G. & Weiler, J.P. (2023). Recent developments in high pressure die-cast magnesium alloys for automotive and future applications. Journal of Magnesium and Alloys. 11(1), 78 87. DOI: doi.org/10.1016/j.jma.2022.10.001.
[5] Liu, B., Yang, J., Zhang, X., Yang, Q., Zhang, J., Li, X. (2022). Development and application of magnesium alloy parts for automotive OEMs: A review. Journal of Magnesium and Alloys. 11(1), 15-47. DOI: 10.1016/j.jma.2022.12.015.
[6] Janik, B. (2011). Application of magnesium alloys in aviation. Prace Instytutu Lotnictwa. 57(221), 102-108. (in Polish).
[7] Prasad, S.V.S., Prasad, S.B., Verma, K., Mishra, R.K., Kumar, V. & Singh, S. (2021). The role and significance of Magnesium in modern day research – A review. Journal of Magnesium and alloys. 10(1), 1-61. DOI: 10.1016/j.jma.2021.05.012.
[8] Blawert, C., Hort, N. & Kainer, K.U. (2004). Automotive applications of magnesium and its alloys. Transaction of the Indian Institute of Metals. 57(4), 397-408.
[9] Chen, H. & Alpas A.T. (2000). Sliding wear map for the magnesium alloy Mg-9Al-0.9Zn (AZ91). Wear. 246(1-2), 106-116. DOI: 10.1016/S0043-1648(00)00495-6.
[10] Walczak, M., Caban, J. & Pliżga, P. (2015). Tribological characteristic of magnesium alloys used in means of transport. TTS Technika Transportu Szynowego. 22(12), 1614-1617.
[11] Parco, M., Zhao, L., Zwick, J., Bobzin, K. & Lugscheider, E. (2007). Investigation of particle flattening behaviour and bonding mechanisms of APS sprayed coatings on magnesium alloys. Surface and Coating Technology. 201(14), 6290-6296. DOI: 10.1016/j.surfcoat.2006.11.034.
[12] Morelli, S., Rombol`a, G., Bolelli, G., Lopresti, M., Puddu, P, Boccaleri, E., Seralessandri, L., Palin, L., Testa, V., Milanesio, M. & Lusvarghi, L. (2022). Hard ultralight systems by thermal spray deposition of WC-CoCr onto AZ31 magnesium alloy. Surface and Coating Technology. 451, 129056 1-26. DOI.org/10.1016/j.surfcoat.2022.129056.
[13] Gray, J.E. & Luan, B. (2002). Protective coatings on magnesium and its alloys – a critical review. Journal of Allys and Compounds. 336(1-2), 88-113. DOI: 10.1016/S0925 8388(01)01899-0.
Go to article

Authors and Affiliations

Marek Mróz
1
ORCID: ORCID
Sylwia Olszewska
1
ORCID: ORCID
Patryk Rąb
1
ORCID: ORCID

  1. Rzeszow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, AZ91 Magnesium alloy is produced by cold chamber high pressure die casting (HPDC) method. Different combinations of the cold chamber HPDC process parameters were selected as; in-mold pressure values of 1000 bar and 1200 bar, the gate speed of 30 m/s and 45 m/s, the casting temperatures of 640°C and 680°C. In addition, the test samples were produced by conventional casting method. Tensile test, hardness test, dry sliding wear test and microstructure analysis of samples were performed. The mechanical properties of the samples produced by the cold chamber HPDC and the conventional casting method were compared. Using these parameters; the casting temperature 680°C, in-mold pressure 1000 bar and the gate speed 30 m/s, the highest tensile strength and the hardness value were obtained. Since the cooling rate in the conventional casting method is slower than that of the cold chamber HPDC method, high mechanical properties are obtained by the formation of a fine-grained structure in the cold chamber HPDC method. In dry sliding wear tests, it was observed that there was a decrease in friction coefficient and less material loss with the increase of hardness values of the sample produced by the cold chamber HPDC method.

Go to article

Authors and Affiliations

Levent Urtekin
Recep Arslan
Fatih Bozkurt
Ümit Er

This page uses 'cookies'. Learn more