Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The essence of ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and a watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in the ablation casting. The research is based on the use of Cordis binder produced by the Hüttenes-Albertus Company. It is a new-generation inorganic binder based on hydrated sodium silicate. Its hardening takes place under the effect of high temperature. As part of the research, loose moulding mixtures based on the silica sand with different content of Cordis binder and special Anorgit additive were prepared. The reference material was sand mixture without the additive. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Additionally, at the Foundry Research Institute in Krakow, preliminary semi-industrial tests were carried out on the use of Cordis sand technology in the manufacture of moulds for ablation casting. The possibility to use these sand mixtures has been confirmed in terms of both casting surface quality and sand reclamation.

Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
K. Major-Gabryś
J. Kamińska
A. Grabarczyk
M. Angrecki
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to demonstrate the possibility of using moulds made from the environmentally friendly sands with hydrated sodium silicate in modified ablation casting. The ablation casting technology is primarily intended for castings with diversified wall thickness and complex shapes made in sand moulds. The article presents the effect of binder content and hardening time on the bending strength Rg u of moulding sands with binders based on hydrated sodium silicate hardened by microwave technology. The aim of the research was to develop an optimal sand composition that would provide the strength necessary to make a mould capable of withstanding the modified ablation casting process. At the same time, the sand composition should guarantee the susceptibility of the mould to the destructive action of the ablation medium, which in this case is water. Tests have shown that microwave hardening provides satisfactory moulds’ strength properties even at a low binder content in the sand mixture.

Go to article

Authors and Affiliations

S. Puzio
J. Kamińska
K. Major-Gabryś
M. Angrecki
M. Hosadyna-Kondracka
Download PDF Download RIS Download Bibtex

Abstract

The ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. The following paper focuses on the selection of moulding sands with hydrated sodium silicate technologies for moulds devoted to the ablation casting of aluminum alloys. It has been proposed to use different types of moulding sands with a water-soluble binder, which is hydrated sodium silicate. The authors showed that the best kind of moulding sands for moulds for Al alloy casting will be moulding sands hardened with physical factors – through dehydration. The use of microwave hardened moulding sands and moulding sands made in hot-box technology has been proposed. The tests were carried out on moulding sands with different types of modified binder and various inorganic additives. The paper compares viscosity of different binders used in the research and thermal degradation of moulding sands with tested binders. The paper analyzes the influence of hardening time periods on bending strength of moulding sands with hydrated sodium silicate prepared in hot-box technology. The analysis of literature data and own research have shown that molding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties for the ablation foundry of Al alloys.

Go to article

Authors and Affiliations

K. Major-Gabryś
M. Hosadyna-Kondracka
A. Grabarczyk
J. Kamińska
Download PDF Download RIS Download Bibtex

Abstract

The ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and water-soluble binder. After pouring the mould with liquid metal the mould is destructed (washed out) using a stream of cooling medium, which in this case is water. The process takes place while the casting is still solidifying.

The following paper focuses on testing the influence of the modified ablation casting of aluminum alloy on casts properties produced in moulds with hydrated sodium silicate binder. The authors showed that the best kind of moulding sands for Al alloy casting will be those hardened with physical factors – through dehydration. The analysis of literature data and own research have shown that the moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties for the modified ablation casting of Al alloys. In the paper the use of microwave hardened moulding sands has been proposed.

The moulds were prepared in the matrix specially designed for this technology. Two castings from the AlSi7Mg alloy were made; one by traditional gravity casting and the other by gravity casting using ablation.

The conducted casts tests showed that the casting made in modified ablation casting technology characterizes by higher mechanical properties than the casting made in traditional casting technology. In both experimental castings the directional solidification was observed, however in casting made by ablation casting, dimensions of dendrites in the structure at appropriate levels were smaller.

Go to article

Authors and Affiliations

K. Major-Gabryś
ORCID: ORCID
M. Hosadyna-Kondracka
ORCID: ORCID
S. Puzio
ORCID: ORCID
J. Kamińska
ORCID: ORCID
M. Angrecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Ablation casting is a technological process in which the increased cooling rate causes microstructure refinement, resulting in improved mechanical properties of the final product. This technology is particularly suitable for the manufacture of castings with intricate shapes and thin walls. Currently, the ablation casting process is not used in the Polish industry. This article presents the results of strength tests carried out on moulding sands based on hydrated sodium silicate hardened in the Floster S technology, intended for ablation casting of the AlSi7Mg (AK7) aluminium alloy. When testing the bending and tensile strengths of sands, parameters such as binder and hardener content were taken into account. The sand mixtures were tested after 24h hardening at room temperature. The next stage of the study describes the course of the ablation casting process, starting with the manufacture of foundry mould from the selected moulding mixture and ending in tests carried out on the ready casting to check the surface quality, structure and mechanical properties. The results were compared with the parallel results obtained on a casting gravity poured into the sand mould and solidifying in a traditional way at ambient temperature.

Go to article

Authors and Affiliations

J. Kamińska
ORCID: ORCID
M. Angrecki
ORCID: ORCID
S. Puzio
ORCID: ORCID
M. Hosadyna-Kondracka
ORCID: ORCID
K. Major-Gabryś
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The possibilities of using an inorganic phosphate binder for the ablation casting technology are discussed in this paper. This kind of binder was selected for the process due to its inorganic character and water-solubility. Test castings were made in the sand mixture containing this binder. Each time during the pouring liquid alloy into the molds and solidification process of castings, the temperature in the mold was examined. Then the properties of the obtained castings were compared to the properties of the castings solidifying at ambient temperature in similar sand and metal molds. Post-process materials were also examined - quartz matrix and water. It has been demonstrated that ablation casting technology promotes refining of the microstructure, and thus upgrades the mechanical properties of castings (Rm was raised about approx. 20%). Properties of these castings are comparable to the castings poured in metal moulds. However, the post-process water does not meet the requirements of ecology, which significantly reduces the possibility of its cheap disposal.
Go to article

Bibliography


[1] Puzio, S., Kamińska, J., Angrecki, M. & Major-Gabryś, K. (2020). The Influence of Inorganic Binder Type on Properties of Self-Hardening Moulding Sands Intended for the Ablation Casting Process. Journal of Applied Materials Engineering. 60(4), 99-108.
[2] United States Patent No. US 7,159,642 B2.
[3] Dudek, P., Fajkiel, A., Reguła, T. & Bochenek, J. (2014). Research on the ablation casting technology of aluminum alloys. Prace Instytutu Odlewnictwa, LIV(2). (in Polish).
[4] Ananthanarayanan, L., Samuel, F. & Gruzelski, J. (1992). Thermal analysis studies of the effect of cooling rate on the microstructure of 319 aluminium alloy. AFS Trans., 100, 383-391.
[5] Thompson, S., Cockcroft, S. & Wells, M. (2004). Advanced high metals casting development solidification of aluminium alloy A356. Materials Science and Technology, 20, 194-200.
[6] Jordon, L.W.J.B. (2011). Monotonic and cyclic characterization of five different casting process on a common magnesium alloy. Inte Natl, Manuf. Sci. Eng. Conf. MSE. Proceeding ASME.
[7] Jorstad, J. & Rasmussen, W. (1997). Aluminium science and technology. American Foundry Society. (368), 204-205.
[8] Weiss, D., Grassi, J., Schultz, B. & Rohagti, P. (2011). Ablation of hybrid metal matrix composites. Transactions of American Foundry Society. (119), 35-42.
[9] Taghipourian, M., Mohammadalihab, M., Boutorabic, S. & Mirdamadic, S. (2016). The effect of waterjet beginning time on the microstructure and mechanical properties of A356 aluminium alloy during the ablation casting process. Journal of Materials Processing Technology. 238, 89-95. DOI: https://doi.org/10.1016/j.jmatprotec.2016.05.004
[10] Rooy, E., Van Linden, J. (2015). ASM Metals Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. 2, 3330-3345.
[11] Bohlooli, V., Shabani Mahalli, M. & Boutorabi, S. (2013). Effect of ablation casting on microstructure and casting properties of A356 aluminium casting alloy. Acta Metallurgica Sininca (English letters). 26(1), 85-91.
[12] Grassi, J., Campbell, J. (2010). Ablation casting. A Technical paper, pp. 1-9.
[13] Jordon, L. (2011). Characterization of five different casting process on a common magnesium alloy. Inte Natl, Manuf. Sci. Eng. Conf. MSEC. Proceeding ASME.
[14] Wang, L., Lett, R. (2011). Microstructure characterization of magnesium control ARM castings. Shape Casting, pp. 215-222.
[15] Yadav , S., Gupta, N. (2017). Ablation casting process – an emerging process for non ferrous alloys. International Journal of Engineering, Technology, Science and Research. 4(4).
[16] Acura. (2015). Ablation Casting. Retrieved from: https://www.acura.com/performance/modals/ablation-casting
[17] Honda. (2015). New technical details next generation nsx revealed at SAE 2015 World Congress. Retrieved from: https://honda.did.pl/pl/samochody/nasza-firma/aktualnosci/450-nowe-szczegoly-techniczne-dot-kolejnej-generacji-modelu-nsx-ujawnione-na-sae-2015-world-congr.html
[18] Technology, F.M. (2015). Ablation-cast parts debut on new acura NSX. Retrieved from: https://www.foundrymag.com/meltpour/ablation-cast-parts-debut-new-acura-nsx
[19] Holtzer, M. (2002). Development directions of molding and core sand with inorganic binders in terms of reducing the negative impact on the environment. Archives of Foundry. 2(3), 50-56. (in Polish).
[20] Major-Gabryś K. (2016). Environmentally friendly foundry molding and core sand. Kraków: Archives of Foundry Engineering. (in Polish)
Go to article

Authors and Affiliations

S. Puzio
1
ORCID: ORCID
J. Kamińska
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Angrecki
1
ORCID: ORCID

  1. ŁUKASIEWICZ Research Network - Foundry Research Institute, Zakopianska 73, 30-418 Cracow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Mickiewicza 30, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to demonstrate the possibility of using moulding sands based on inorganic binders hardened in a microwave chamber in the technology of ablation casting of aluminium alloys. The essence of the ablation casting technology consists in this that a mould with a water-soluble binder is continuously washed with water immediately after being poured with liquid alloy until its complete erosion takes place. The application of an environmentally friendly inorganic binder improves the ecology of the whole process, while microwave hardening of moulding sands allows moulds to be made from the sand mixture containing only a small amount of binder.

The studies described in this article included microwave-hardened sand mixtures containing the addition of selected inorganic binders available on the market. The strength of the sands with selected binders added in an amount of 1.0; 1.5 and 2.0 parts by mass was tested. As a next step, the sand mixtures with the strength optimal for ablation casting technology, i.e. about 1.5 MPa, were selected and tested for the gas forming tendency. In the four selected sand mixtures, changes occurring in the samples during heating were traced. Tests also included mould response to the destructive effect of ablation medium, which consisted in the measurement of time necessary for moulds to disintegrate while washed with water. Tests have shown the possibility of using environmentally friendly, microwave-hardened moulding sands in ablation casting of aluminium alloys.

Go to article

Authors and Affiliations

S. Puzio
ORCID: ORCID
J. Kamińska
ORCID: ORCID
M. Angrecki
ORCID: ORCID
K. Major-Gabryś
ORCID: ORCID

This page uses 'cookies'. Learn more