Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 204
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Activation of tyre pyrolysis char (TPC) can significantly increase its market value. To date, it has been frequently carried out in different reactors. In this work, thermogravimetric analysis was used instead. The performance of activated pyrolysis chars was tested by adsorption of acetone vapour and comparison of the equilibrium adsorption capacities for all samples. The highest equilibrium adsorption capacity was observed for the carbon burn-off of  60%. In addition, the equilibrium adsorption capacity of activated TPC decreases by about 10% after eleven adsorption/desorption cycles. Moreover, activation changed the porous structure of pyrolysis chars from mesoporous to micro-mesoporous.
Go to article

Authors and Affiliations

Tomasz Kotkowski
Robert Cherbański
Eugeniusz Molga
Download PDF Download RIS Download Bibtex

Abstract

Ludwigite is the main available boron-bearing resource in China. In order to enrich the theory system and optimize its utilization processes, this paper study the mechanism and kinetics on non-isothermal decomposition of ludwigite in inert atmosphere by means of thermal analysis. Results show that, the decomposition of serpentine and szajbelyite is the main cause of mass loss in the process. At the end of decomposition, hortonolite and ludwigite are the two main phases in the sample. The average E value of structural water decomposition is 277.97 kJ/mol based on FWO method (277.17 kJ/mol based on KAS method). The results is proved to be accurate and reliable. The mechanism model function of structural water decomposition is confirmed by Satava method and Popescu method. The form of the most probable model function is G(α) = (1 – α)–1 – 1 (integral form) and f (α) = (1 – α)2 (differential form), and its mechanism is chemical reaction. This is verified by the criterion based on activation energy of model-free kinetics analysis.

Go to article

Authors and Affiliations

X. Fu
M. Chu
L. Gao
Z. Liu
Download PDF Download RIS Download Bibtex

Abstract

This paper shows the possibility that the mineral coal existing in the mining basins of northern Spain have a high added value. This would facilitate its future use in different fields such as new materials, nanotechnology, energy use in situ, coal bed methane, enhanced coal bed methane and coalmine methane.

An analytical study of mineral coal samples is carried out. The samples come from two deposits located in coal basins of the Cantabrian Mountains. The duly prepared samples are subjected to an activation process. Within this transformation, different treatments are applied to different sub-samples. Some of the sub-samples suffer a previous demineralization by successive attacks with acids, followed by oxidation and pyrolysis. Finally, all of them are activated with CO2 and H2O(steam).

The carbonaceous products resulting from each treatment are characterised. The results show that all the pre-treatments used were positive for the textural development of the materials. Likewise, proper management of the processes and of the different operating variables allows the procurement of carbonaceous materials with a “tailor-made” structural development of the coal type. This material receives the name “activated” and can be employed in specific processes.

Go to article

Authors and Affiliations

Juan-José Vidal-Lombas
Martina-Inmaculada Álvarez-Fernández
María-Concepción Casado-Sulé
Maria-Belen Prendes-Gero
Francisco-José Suárez-Domínguez
Download PDF Download RIS Download Bibtex

Abstract

Passive noise reduction methods require thick and heavy barriers to be effective for low frequencies and those clasical ones are thus not suitable for reduction of low frequency noise generated by devices. Active noise-cancelling casings, where casing walls vibrations are actively controlled, are an interesting alternative that can provide much higher low-frequency noise reduction. Such systems, compared to classical ANC systems, can provide not only local, but also global noise reduction, which is highly expected for most applications. For effective control of casing vibrations a large number of actuators is required. Additionally, a high number of error sensors, usually microphones that measure noise emission from the device, is also required. All actuators have an effect on all error sensors, and the control system must take into account all paths, from each actuator to each error sensor. The Multiple Error FXLMS has very high computational requirements. To reduce it a Switched-Error FXLMS, where only one error signal is used at the given time, have been proposed. This, however, significantly reduces convergence rate. In this paper an algorithm that uses multiple errors at once, but not all, is proposed. The performance of various algorithm variants is compared using simulations with the models obtained from real active-noise cancelling casing.

Go to article

Authors and Affiliations

Krzysztof Mazur
Stanislaw Wrona
Anna Chraponska
Jaroslaw Rzepecki
Marek Pawelczyk
Download PDF Download RIS Download Bibtex

Abstract

Tires play an important role in the automobile industry. However, their disposal when worn out has adverse effects on the environment. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH onto pyrolytic char. Adsorption studies on lead onto chemically activated carbon were carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/100 ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found out that the adsorption capacity increased with an increase in adsorbent dosage, contact time, pH, and decreased with an increase in lead concentration and temperature. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, X-ray Diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope were used to characterize the pyrolytic carbon char before and after activation. The numerical optimization analysis results showed that the maximum adsorption capacity of

93.176 mg/g was obtained at adsorbent dosage of 0.97 g/100 ml, pH 7, contact time of 115.27 min, initial metal concentration of 100 mg/and temperature of 25°C. FTIR and TGA analysis showed the presence of oxygen containing functional groups on the surface of the activated carbon produced and that the weight loss during the activation step was negligible.

Go to article

Authors and Affiliations

Hilary Rutto
Tumisang Seidigeng
Lucky Malise
Download PDF Download RIS Download Bibtex

Abstract

Fe-40wt% TiB2 nanocomposites were fabricated by mechanical activation and spark-plasma sintering of a powder mixture of iron boride (FeB) and titanium hydride (TiH2). The powder mixture of (FeB, TiH2) was prepared by high-energy ball milling in a planetary ball mill at 700 rpm for 3 h followed by spark-plasma sintering (SPS) at various conditions. Analysis of the change in relative sintered density and densification rate during sintering showed that a self-propagating high-temperature synthesis reaction occurs to form TiB2 from FeB and Ti. A sintered body with relative density higher than 98% was obtained after sintering at 1150°C for 5 and 15 min. The microstructural observation of sintered compacts with the use of FE-SEM and TEM revealed that ultrafine particulates with approximately 5 nm were evenly distributed in an Fe-matrix. A hardness value of 83 HRC was obtained, which is equivalent to that of conventional WC-20 Co systems.
Go to article

Authors and Affiliations

B.-W. Kim
X.-K. Huynh
J.-S. Kim
Download PDF Download RIS Download Bibtex

Abstract

Zinc is present in electric arc furnace dust (EAFD) mainly in two basic minerals, namely as franklinite ZnFe2O4 and/or zincite ZnO. While zincite is relatively reactive and easily treatable, franklinite is considerably refractory, which causes problems during EAFD processing. In this work EAFD containing 18.53% Zn was leached in water solution of ammonium carbonate. This leaching solution selectively leaches zincite, while franklinite is refractory and stable against leaching in this case. The temperature dependence of zinc leaching from EAFD was studied and the activation energy EA was determined by two methods: 1.) classically based on zinc chemical analyses from the leaching solution and 2.) by using of X-Ray diffraction qualitative phase analyses of leaching residues. The determined values of activation energies 37.41 and 38.55 kJmol–1 match perfectly, which show the excellent possibility of using X-Ray diffraction toward the study of leaching kinetics at properly chosen experimental conditions. The important result is the determination of the amount zincite and franklinite in EAFD, which is not possible by using of classical chemical methods.
Go to article

Authors and Affiliations

T. Havlik
G. Maruskinova
A. Miskufova
Download PDF Download RIS Download Bibtex

Abstract

Isothermal hot compression experiments were carried out using the Gleeble-1500D thermal mechanical simulator. The flow stress of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys was studied at hot deformation temperature of 550°C, 650°C, 750°C, 850°C, 900°C and the strain rate of 0.001 s–1, 0.01 s–1, 0.1 s–1, 1 s–1, 10 s–1. Hot deformation activation energy and constitutive equations for two kinds of alloys with and without yttrium addition were obtained by correlating the flow stress, strain rate and deformation temperature. The reasons for the change of hot deformation activation energy of the two alloys were analyzed. Dynamic recrystallization microstructure evolution for the two kinds of alloys during hot compression deformation was analyzed by optical and transmission electron microscopy. Cu-1%Zr and Cu-1%Zr-0.15%Y alloys exhibit similar behavior of hot compression deformation. Typical dynamic recovery occurs during the 550-750°C deformation temperature, while dynamic recrystallization (DRX) occurs during the 850-900°C deformation temperature. High Zr content and the addition of Y significantly improved Cu-1%Zr alloy hot deformation activation energy. Compared with hot deformation activation energy of pure copper, hot deformation activation energy of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys is increased by 54% and 81%, respectively. Compared with hot deformation activation energy of the Cu-1%Zr alloy, it increased by 18% with the addition of Y. The addition of yttrium refines grain, advances the dynamic recrystallization critical strain point and improves dynamic recrystallization.
Go to article

Authors and Affiliations

K. Tian
B. Tian
A.A. Volinsky
Y. Zhang
Y. Liu
Y. Du
Download PDF Download RIS Download Bibtex

Abstract

Reduction of three industrial nickel oxides (Goro, Tokyo and Sinter 75) with a hydrogen bearing gas was revisited in the temperature interval from 523 to 673 K (250 to 400°C). A pronounced incubation period is observed in the temperature interval tested. This period decreases as the reduction temperature increases. Thermogravimetric data of these oxides were fitted using the Avrami-Erofeyev kinetic model. The reduction of these oxides is controlled by a nucleation and growth mechanism of metallic nickel over the oxides structure. Rate kinetic constants were re-evaluated and the activation energy for the reduction of these oxides was re-calculated.
Go to article

Authors and Affiliations

G. Plascencia
Download PDF Download RIS Download Bibtex

Abstract

The five-layer Aurivillius type structures with the general chemical formula Bi5Fe2-xMnxTi3O18, where x = 0, 0.6, 1.2 have been synthesized and tested. The SEM studies showed a significant increase in grain size in the manganese-modified Aurivillius type ceramic material (for x = 1.2). The increase in the amount of manganese ions (Mn3+) affects the decrease in the temperature at which the relaxation processes take place. Namely from 525 K (1 kHz) and 725 K (1 MHz) for BFT sample (x = 0) to 355 K (1 kHz) and 565 K (1 MHz) for BFM12T sample (x = 1.2). Using the Arrhenius’s law and the Vogel-Fulcher’s relationship the activation energy (Ea) and the relaxation time have been calculated. The value of Ea increases with the increase of the Mn amount from 0.737 eV (for x = 0) to 0.915 eV (for x = 1.2).

Go to article

Authors and Affiliations

J.A. Bartkowska
D. Bochenek
Download PDF Download RIS Download Bibtex

Abstract

Nil strength temperature of 1062°C and nil ductility temperature of 1040°C were experimentally set for CuFe2 alloy. The highest formability at approx. 1020°C is unusable due to massive grain coarsening. The local minimum of ductility around the temperature 910°C is probably due to minor formation of γ-iron. In the forming temperatures interval 650-950°C and strain rate 0.1-10 s–1 the flow stress curves were obtained and after their analysis hot deformation activation energy of 380 kJ·mol–1 was achieved. Peak stress and corresponding peak strain values were mathematically described with good accuracy by equations depending on Zener-Hollomon parameter.

Go to article

Authors and Affiliations

I. Schindler
M. Sauer
P. Kawulok
K. Rodak
E. Hadasik
M.B. Jabłońska
S. Rusz
V. Ševčák
Download PDF Download RIS Download Bibtex

Abstract

In the current study, the hot deformation of medium carbon V-Ti micro-alloyed steel was surveyed in the temperature range of 950 to 1150°C and strain rate range of 0.001 to 1 s–1 after preheating up to 1200°C with a compression test. In all cases of hot deformation, dynamic recrystallization took place. The influence of strain rate and deformation temperature on flow stress was analyzed. An increase in the strain rate and decrease in the deformation temperature postponed the dynamic recrystallization and increased the flow stress. The material constants of micro-alloyed steel were calculated based on the constitutive equations and Zener-Hollomon parameters. The activation energy of hot deformation was determined to be 458.75 kJ/mol, which is higher than austenite lattice self-diffusion activation energy. To study the influence of precipitation on dynamic recrystallization, the stress relaxation test was carried out in a temperature range of 950 to 1150°C after preheating up to 1200°C. The results showed no a stress drop while representing the interaction of particles with dynamic recrystallization.

Go to article

Authors and Affiliations

K. Tavaei
A. Meysami
Download PDF Download RIS Download Bibtex

Abstract

Neotectonic studies in Poland concern mainly manifestations of those tectonic movements that have been active in Late Neogene and Quaternary times, as well as geodetically measured recent vertical and horizontal crustal motions. Among problems of particular interest, the following should be listed: periodicity of neotectonic (mostly Quaternary) activity, estimation of the parametres of the neotectonic stress field, amplitudes and rates of Quaternary and recent movements, development of neotectonic troughs and young faults, mutual relationships among photolineaments, geological structures and recent seismicity, as well as the role of tectonic reactivation of fault zones due to human activity. Neotectonic faults in Poland have developed in Neogene and Quaternary times due to reactivation of Laramian or older structures, or in the Quaternary due to reactivation of Neogene faults. The size of throw of Quaternary faults changes from 40-50 m and >100 m in the Sudetes and the Lublin Upland, to several - several tens of metres in the Carpathians. The average rate of faulting during Quaternary times has been 0.02 to 0.05 mm/yr, what enables one to include these structures into the domains of inactive or low-activity faults. A similar conclusion can be drawn from the results of repeated precise levellings and GPS campaigns. Strike-slip displacements have been postulated for some of these faults. Isolated faults in Central Poland have shown middle Quaternary thrusting of the order of 40-50 m, and some of the Outer Carpathian overthrusts tend to reveal young Quaternary activity, as indicated, i.a., by concentrations of fractured pebbles within the thrust zones. Episodes of increased intensity of faulting took place in the early Quaternary, in the Mazovian (Holsteinian) Interglacial, and during or shortly after the Odranian (Drenthe) glacial stage. Some of the faults have also been active in Holocene times. Recent seismic activity is often related to strike-slip faults, which in the Carpathians trend ENE-WSW and NE-SW, whereas outside the Carpathians they are oriented parallel to the margin of the East-European Platform and the Sudetic Marginal Fault. Future investigations should put more emphasis on palaeoseismotectonic phenomena and practical application of neotectonic research.
Go to article

Authors and Affiliations

Witold Zuchiewicz
Janusz Badura
Marek Jarosiński
Committee for Quaternary Research Polish Academy of Sciences Commission on Neotectonics
Download PDF Download RIS Download Bibtex

Abstract

Exploited lubricants are dangerous contaminants because of their toxicity and low biodegradability. In this study, microbial culture active in exploited lubricant oil Mobil I was isolated and inoculated to sandy soil containing 0.5 g of contaminant per 100 g of dry soil. Microorganisms were used as free cells and immobilizate on wood chips, soil was also properly supplied with water and nutrients. The bioaugumantation seems to enhance biodegradation process. After 5 months, 93% of non-polar compounds were eliminated from soil containing immobilized biomass. Comparatively, in non-treated soil (control system) the contaminant elimination was at the level of 47%. Bacterial number in treated and non-treated soil was similar for about 3 months; however enzymatic activity (dehydrogenascs and hydrolascs) in control soil was much lower. Finally, after 5 months of treatment the content of bacteria active in contaminant decomposition in inoculated soil was 100-fold higher than in control system. Presumably, the main reason of low remediation results in non-treated soil seems to be low enzymatic activity of the biomass.
Go to article

Authors and Affiliations

Ewa Zborowska
Jeremi Naumczyk
Ewelina Bugryn
Renata Wojciechowska
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to show the effect of activation method of tyre pyrolysis char (TPC) on adsorption of bisphenol A (BPA) from aqueous solutions. The TPC was produced from end-of-life-tyres (ELT) feedstock in a pilot plant at 773 K. Activation was accomplished using two classical methods: physical activation withCO2 and chemical activation withKOH. The two produced adsorbents had pores ranging from micro- to macropores. Distinct differences in the BET surface areas and pore volumes between the adsorbents were displayed showing better performance of the chemically activated adsorbent for adsorption of BPA from water.

The results of the kinetic studies showed that the adsorption of BPA followed pseudo-second-order kinetic model. The Freundlich, Langmuir, Langmuir–Freundlich and Redlich–Peterson isotherm equations were used for description of the adsorption data. The Langmuir–Freundlich isotherm model best fits the experimental data for the BPA adsorption on both adsorbents. The Langmuir–Freundlich monolayer adsorption capacity, qmLF, obtained for the CO2-activated tyre pyrolysis char (AP-CO2) and KOH-activated tyre pyrolysis char (AP-KOH) were 0.473 and 0.969 mmol g��1, respectively.

Go to article

Authors and Affiliations

Krzysztof Kuśmierek
ORCID: ORCID
Andrzej Świątkowski
ORCID: ORCID
Tomasz Kotkowski
ORCID: ORCID
Robert Cherbański
ORCID: ORCID
Eugeniusz Molga
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

A gyroscopic rotor exposed to unbalance and internal damping is controlled with an active piezoelectrical bearing in this paper. The used rotor test-rig is modelled using an FEM approach. The present gyroscopic effects are then used to derive a control strategy which only requires a single piezo actuator, while regular active piezoelectric bearings require two. Using only one actuator generates an excitation which contains an equal amount of forward and backward whirl vibrations. Both parts are differently amplified by the rotor system due to gyroscopic effects, which cause speed-dependent different eigenfrequencies for forward and backward whirl resonances. This facilitates eliminating resonances and stabilize the rotor system with only one actuator but requires two sensors. The control approach is validated with experiments on a rotor test-rig and compared to a control which uses both actuators.
Go to article

Authors and Affiliations

Jens Jungblut
1
ORCID: ORCID
Daniel Franz
1
Christian Fischer
1
ORCID: ORCID
Stephan Rinderknecht
1
ORCID: ORCID

  1. Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
Download PDF Download RIS Download Bibtex

Abstract

The concentration of hydrocarbons in the yield of dry matter in ryegrass depended upon the sludge dose. The highest concentrations of hydrocarbons in ryegrass were found in a control object. In objects fertilized with waste activated sludge the highest concentration of hydrocarbons was found in ryegrass with 20% ofwaste activated sludge. After a two-year experiment, the highest concentration of hydrocarbons was found in the control object. In soil materials fertilized with waste activated sludge the concentration of hydrocarbons grew along with the sludge dose.
Go to article

Authors and Affiliations

Stanisław Kalembasa
Beata Wiśniewska
Mariusz Kluska
Download PDF Download RIS Download Bibtex

Abstract

The concentration of hydrocarbons in the yield of dry matter in ryegrass depended upon the sludge dose. The highest concentrations of hydrocarbons in ryegrass were found in a control object. In objects fertilized with waste activated sludge the highest concentration of hydrocarbons was found in ryegrass with 20% ofwaste activated sludge. After a two-year experiment, the highest concentration of hydrocarbons was found in the control object. In soil materials fertilized with waste activated sludge the concentration of hydrocarbons grew along with the sludge dose.
Go to article

Authors and Affiliations

Anna Kiepas-Kokot
Anna Iwaniuk
Download PDF Download RIS Download Bibtex

Abstract

Graphs in the thermodynamic plane acoustic pressure versus excess acoustic density representing acoustic hysteresis, are considered as indicators of relaxation processes, equilibrium parameters of a flow, and kinds of wave exciters. Some flows with deviation from adiabaticity are examined: the Newtonian flow of a thermoconducting gas, the flow of a gas with vibrational relaxation, the flow of liquid electrolyte with a chemical reaction, and the Bingham plastic flow. The total range of characteristic frequencies of a harmonic exciter is taken into account. The impulsive sound is considered as well. The peculiarities of hysteretic behaviour are discussed in dependence with the kind and degree of deviation form adiabaticity. Examples of acoustically active flows are discussed.
Go to article

Authors and Affiliations

Anna Perelomova
1

  1. Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper introduces a new design of a platform mechanism with 6 DOF. The platform is supported on three active legs, each equipped with two rotating drives. The mechanism can be used in active vibration control systems. The values of drive angular velocities are precisely controlled, so that the transmission of the base vibrations onto the platform could be minimal. The values of drive torques to be generated are determined. The mechanism was modelled using the Working Model® 30. The effects of active vibration control are also presented.
Go to article

Authors and Affiliations

Grzegorz Tora
Download PDF Download RIS Download Bibtex

Abstract

The article presents a dynamic analysis of the sorting process of load units transported on conveyor belts. The process is realized by means of an active fence with one freedom degree. During analytic research the manipulated loads were treated as undeformable bodies, or in the case of load impact against the fence as the bodies with nonlinear springy-damping properties. A flexible element, described by Kelvin linear model, was used in the drive of the fence of a rotatably fixed beam. Appropriate choice of construction parameters makes it possible to mitigate the dynamic interactions of the sorted loads.
Go to article

Authors and Affiliations

Tomasz Piątkowski
Janusz Sempruch
Download PDF Download RIS Download Bibtex

Abstract

A. B. Dobrowolski, a member of the Belgian expedition in Belgica to West Antarctica (1897-1899), after his return home became a strong supporter of Polish scientific activity in the Polar countries. His patronage - called by him the "Polar Action", was especially well marked during organization of three Polish expeditions to the Svalbard archipelago: to Bear Island during the 2nd Polar Year, 1932-33 and to Spitsbergen in 1934 and 1938. Apart from his scientific achievements in Antarctica, Dobrowolski was also widely known as an author of popular-scientific books on history of discovery and exploration in the Arctic and the Antarctic.

Go to article

Authors and Affiliations

Joanna Popiołek
Download PDF Download RIS Download Bibtex

Abstract

Flexible and rigid road pavement deteriorates over time and needs high-performance patching repair materials. Cold mix asphalt patching is an easy and inexpensive repair material to repair potholes and other damaged roads. However, the repaired road pavement fails because it doesn’t have adequate compressive and bonding strength to the substrate. Thus, this research uses high-performance geopolymer repair materials to patch against road pavement potholes substrate. Geopolymer repair materials could improve the bonding strength, making them suitable for road repair purposes. For making geopolymer repair materials, the main materials used were high calcium aluminosilicate source materials such as fly ash, sodium hydroxide, sodium silicate, and water. This study tested the compressive and bonding strength of geopolymer repair materials after 1, 7, 14, and 28 days. This study found that the compressive strength of 90 g of alkali activator was the highest, at 37.0 MPa. The bonding strength improved gradually from day 1 to day 14, and then considerably on day 28. The compressive strength and bonding strength both increase in direct proportion to the amount of alkali activator present. Alkali activator is optimal at 90 grams for compressive strength and bonding strength of geopolymer repair materials.
Go to article

Authors and Affiliations

W.W.A. Zailani
1
ORCID: ORCID
N.M. Apandi
1
ORCID: ORCID
M.M.A. Abdullah
2
ORCID: ORCID
M.F.M. Tahir
2
ORCID: ORCID
I Nengah Sinarta
3
Komang Ayu Ni Agustini
3
ORCID: ORCID
S. Abdullah
1
ORCID: ORCID

  1. Universiti Teknologi MARA, College of Engineering, School of Civil Engineering, 40450 Shah Alam, Selangor, Malaysia
  2. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Kangar, Perlis, Malaysia
  3. Warmadewa University, Faculty of Engineering and Planning, Den Pasa r, 80239, Indonesia

This page uses 'cookies'. Learn more