Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a study concerning an AlSi7Mg alloy and the effect of subjecting the liquid metal to four different processes: conventional refining with hexachloroethane; the same refining followed by modification with titanium, boron, and sodium; refining by purging with argon carried out in parallel with modification with titanium and boron salts and strontium; and parallel refining with argon and modification with titanium, boron, and sodium salts. The effect of these four processes on compactness of the material, parameters of microstructure, and fatigue strength of AlSi7Mg alloy after heat treatment. It has been found that the highest compactness (the lowest porosity ratio value) and the most favorable values of the examined parameters of microstructure were demonstrated by the alloy obtained with the use of the process including parallel purging with argon and modification with salts of titanium, boron, and sodium. It has been found that in the fatigue cracking process observed in all the four variants of the liquid metal treatment, the crucial role in initiation of fatigue cracks was played by porosity. Application of the process consisting in refining by purging with argon parallel to modification with Ti, B, and Na salts allowed to refine the microstructure and reduce significantly porosity of the alloy extending thus the time of initiation and propagation of fatigue cracks. The ultimate effect consisted in a distinct increase of the fatigue limit value.

Go to article

Authors and Affiliations

M. Tupaj
ORCID: ORCID
A.W. Orłowicz
ORCID: ORCID
A. Trytek
ORCID: ORCID
Marek Mróz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Plasma oxidation, similarly to anodic oxidation (anodizing), are classified as electrochemical surface treatment of metals such as Al, Mg, Ti and their alloys. This type of treatment is used to make surface of castings, plastically processed products, shaped with incremental methods to suitable for certain requirements. The most important role of the micro plasma coating is to protect the metal surface against corrosion. It is well known that coating of aluminium alloys containing silicon using anodic oxidation causes significant difficulties. They are linked to the eutectic nature of this alloy and result in a lack of coverage in silicon-related areas. The coating structure in these areas is discontinuous. In order to eliminate this phenomenon, it is required to apply oxidation coatings using the PEO (Plasma Electrolytic Oxidation) method. It allows a consistent, crystalline coating to be formed. This study presents the mechanical properties of the coatings applied to Al-Si alloy using the PEO method. As part of the testing, the coating thickness, microhardness and scratch resistance were determined. On the basis of the results obtained, it was concluded that the thickness of the coatings complies with the requirements of conventional anodizing. Additionally, microhardness values exceeded the results obtained with standard methods.
Go to article

Bibliography

[1] Famiyeh, L. & Huang, H. (2019). Plasma electrolytic oxidation coatings on aluminum alloys: microstructures, properties, and applications. Modern Concepts in Material Science. 2(1), 1-13. DOI: 10.33552/MCMS.2019.02.000526.
[2] Sieber, M., Simchen, F., Morgenstern, R., Scharf, I. & Lampke, T. (2018). Plasma electrolytic oxidation of high-strength aluminium alloys-substrate effect on wear and corrosion performance. Metals. 8(5), 356. DOI: 10.3390/met8050356.
[3] Matykina, E., Arrabal, R., Mohedano, M., Mingo, B., Gonzalez, J., Pardo, A. & Merino, M.C. (2017). Recent advances in energy efficient PEO processing of aluminium alloys. Transactions of Nonferrous Metals Society of China. 27(7) 1439-1454. DOI: 10.1016/S1003-6326(17)60166-3.
[4] Agureev, L., Savushkina, S., Ashmarin, A., Borisov, A., Apelfeld, A., Anikin, K., Tkachenko, N., Gerasimov, M., Shcherbakov, A., Ignatenko, V. & Bogdashkina, N. (2018). Study of plasma electrolytic oxidation coatings on aluminum composites. Metals. 8(6), 459. DOI: 10.3390/met8060459.
[5] Lakshmikanthan, A., Bontha, S., Krishna, M., Praveennath, G.K. & Ramprabhu, T. (2019). Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. Journal of Alloys and Compounds. 786, 570-580. DOI: 10.1016/j.jallcom.2019.01.382.
[6] Lakshmikanthan, A., Prabhu, T.R., Babu, U.S., Koppad, P.G., Gupta, M., Krishna, M. & Bontha, S. (2020). The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. Journal of Materials Research and Technology. 9(3), 6434-6452. DOI: 10.1016/j.jmrt.2020.04.027.
[7] Rogov, A., Lyu, H., Matthews, A. & Yerokhin, A. (2020). AC plasma electrolytic oxidation of additively manufactured and cast AlSi12 alloys. Surface and Coatings Technology, 399, 126116. DOI: 10.1016/j.surfcoat.2020.126116.
[8] Li, K., Li, W., Zhang, G., Zhu, W., Zheng, F., Zhang, D. & Wang, M. (2019). Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al-Si alloy. Journal of Alloys and Compounds. 790, 650-656. DOI: 10.1016/j.jallcom.2019.03.217.
[9] Gencer, Y., Tarakci, M., Gule, A.E. & Oter C.Z. (2014). Plasma Electrolytic Oxidation of Binary Al-Sn Alloys. Acta Physica Polonica A. 125(2), 659-663. DOI: 10.12693/APhysPolA.125.659.
[10] Moszczyński, P. & Trzaska, M. (2011). Shaping of oxide layers on the aluminum surface by plasma electrochemical oxidation. Elektronika: konstrukcje, technologie, zastosowania. 52(12), 96-99. (in Polish).
[11] He, J., Cai, Q.Z., Luo, H.H., Yu, L. & Wei, B.K. (2009). Influence of silicon on growth process of plasma electrolytic oxidation coating on Al–Si alloy. Journal of Alloys and Compounds. 471(1-2), 395-399. DOI: 10.1016/ j.jallcom.2008.03.114.
[12] Blawert, C., Karpushenkov, S.A., Serdechnovaa, M., Karpushenkava, L.S. & Zheludkevicha, M.L. (2020). Plasma electrolytic oxidation of zinc alloy in a phosphate-aluminate electrolyte. Applied Surface Science. 505, 144552, DOI: 10.1016/j.apsusc.2019.144552.
[13] Dehnavi, V. (2014). Surface Modification of Aluminum Alloys by Plasma Electrolytic Oxidation. A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy The School of Graduate and Postdoctoral Studies, The University of Western Ontario London, Ontario, Canada.
[14] Zhang, Y., Xu, H., Yang, Y. (2007). Study on the optimization of pulse frequency in the micro arc oxidation of aluminum alloys. Proceedings of Vacuum Metallurgy and Surface Engineering. Beijing: Electronics Industry Press. 33−40.
[15] Habazaki, H., Onodera, T., Fushimi, K., Konno, H. & Toyotake, K. (2007). Spark anodizing of β-Ti alloy for wear resistant coating. Surface and Coatings Technology. 201(21), 8730-8737. DOI: 10.1016/j.surfcoat.2006.05.041.
[16] Kurze, P., Krysmann, W. & Schneider, H.G. (2006). Application fields of ANOF layers and composites. Crystal Research and Technology. 21(12), 1603-1609. DOI: 10.1002/crat.2170211224.
[17] Butyagin, P.I., Khorkhryakov, Y.V. & Mamaev, A.I. (2003). Microplasma systems for creating coatings on aluminium alloys. Materials Letters. 57(11), 1748-1751. DOI: 10.1016/S0167-577X(02)01062-5.
[18] Sonova, A.I. & Terleeva, O.P. (2008). Morphology, structure, and phase composition of microplasma coatings formed on Al−Cu−Mg alloy. Protection of Metals. 44(1), 65-75. DOI: 10.1134/S0033173208010098.
[19] Shihai, C., Jiunmin, H., Weijing, L., Suk-Bong, K. & Jung-Moo, L. (2006). Study on wear behavior of plasma electrolytic oxidation coatings on aluminum alloy. Rare Metals. 25(6), 141-145. DOI: 10.1016/S1001-0521(08)60069-8.
[20] Dai, L., Li, W., Zhang, G., Fu, N. & Duan, Q. (2017). Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode. In IOP Conf. Series: Materials Science and Engineering, 19–21 November 2016 (167, 012063), Sanya, China: IOP Publishing Ltd. DOI: 10.1088/1757-899X/167/1/012063.
[21] Li, Q.B., Liu, C.C., Yang, W.B. & Liang, J. (2017). Growth mechanism and adhesion of PEO coatings on 2024Al alloy. Surface Engineering. 33(10), 760-766. DOI: 10.1080/02670844.2016.1200860.
[22] Ayday, A. & Durman, M. (2015). Growth characteristics of plasma electrolytic oxidation coatings on aluminum alloys. Acta Physica Polonica A. 127(4), 886-887, DOI: 10.12693/APhysPolA.127.886.
[23] Dehnavi, V., Shoesmith, D.W., Luan, B.L., Yari, M. & Liu, X.Y. & Rohani, S. (2015). Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy – The effect of the PEO process stage. Materials Chemistry and Physics. 161, 49-58. DOI: 10.1016/j.matechemphys.2015.04.058.
[24] Gębarowski, W. & Pietrzyk, S. (2012). Plasma electrolytic oxidation of aluminum process technology outline. Rudy i Metale Nieżelazne. 57(4), 237-242. (in Polish).
[25] Duanjie, L. (2014). Scratch hardness measurement using mechanical tester. Retrieved February 12, 2020, from http://nanovea.com/app-notes/scratch-hardness-measurement.pl
[26] Hussein, R.O. & Northwood, D.O. (2014). Production of anti-corrosion coatings on light alloys (Al, Mg, Ti) by plasma-electrolytic oxidation (PEO). In Mahmood Aliofkhazraei (Eds.), Developments in Corrosion Protection (pp. 201-238). London, UK: IntechOpen Limited. DOI: 10.5772/57171.
[27] Wredenberg, F. & Larsson, P.-L. (2009). Scratch testing of metals and polymers: Experiments and numerics. Wear. 266(1-2), 76-83. DOI: 10.1016/j.wear.2008.05.014.
[28] Hussein, R.O., Northwood, D.O. & Nie, X. (2012). The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. Journal of Alloys and Compounds. 541, 41-48, DOI: 10.1016/j.jallcom.2012.07.003.
[29] Matykina, E., Arrabal, R., Skeldon, P. & Thompson, G.E. (2009). Investigation of the growth processes of coatings by AC plasma electrolytic oxidation of aluminum. Electrochimica Acta. 54(27), 6767-6778.
[30] Sharift, H., Aliofkhazraei, M. & Darband, G.B. (2018). A review on adhesion strength of PEO coatings by scratch test method. Surface Review and Letters. 25(3), 1830004. DOI: 10.1142/S0218625X18300046.
Go to article

Authors and Affiliations

P. Długosz
1
ORCID: ORCID
A. Garbacz-Klempka
2
ORCID: ORCID
J. Piwowońska
1
P. Darłak
3
ORCID: ORCID
M. Młynarczyk
3

  1. Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str. 30-418 Cracow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Kraków, Poland
  3. AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of the effect of shape of primary silicon crystals on the sizes of stresses and deformations in a surface layer

of A390.0 alloy by Finite Elements Method (FEM). Analysis of stereological characteristics of the studied alloy, performed based on a

quantitative metallographic analysis in combination with a statistical analysis, was used for this purpose. The presented simulation tests

showed not only the deposition depth of maximum stresses and strains, but also allowed for determining the aforementioned values

depending on the shape of the silicon crystals. The studied material is intended for pistons of internal combustion engines, therefore the

analysis of the surface layer corresponded to conditions during friction in a piston-cylinder system of an internal combustion engine having

power of up to 100 kW. The obtained results showed important differences in the values of stresses and strains up to 15% between various

shape of the silicon crystals. Crystals with sharp edges caused higher stresses and deformation locally than those with rounded shapes.

Go to article

Authors and Affiliations

R. Wieszała
J. Piątkowski
H. Bąkowski
Download PDF Download RIS Download Bibtex

Abstract

Casting porosity is the main factor influencing the fatigue properties of Al-Si alloys. Due to the increasing use of aluminum castings, porosity characterization is useful for estimating their fatigue strength. In principle, a combination of metallographic techniques and statistical pore analysis is a suitable approach for predicting the largest defect size that is critical for the casting. Here, the influence of modifiers and casting technology on the largest pore size population in AlSi7Mg alloy specimens is obtained and discussed adopting the Murakami's approach. However, porosity evaluation is a challenge in the case of microshrinkage pores, which are frequently found in industrial castings. Their complicated morphology prevents a reliable definition of an equivalent defect size based on metallographic techniques. This contribution reports the application of X-ray tomography to the 3D reconstruction of real pores in cast Al-Si alloys and provides insight into the complication of microshrinkage pore sizing by metallography.

Go to article

Authors and Affiliations

Stanislava Fintová
Giancarlo Anzelotti
Radomila Konečná
Gianni Nicoletto
Download PDF Download RIS Download Bibtex

Abstract

The study aims to investigate the effect of semisolid structure and strontium (Sr) addition on the wear behavior of hypoeutectic Al-Si alloy. Semisolid hypoeutectic Al-Si alloy was prepared using cooling slope casting with addition of 0 to 0.93 wt.% Sr. Microstructural study was done using an optical microscope. Vicker microhardness and pin on disc tribometer were used for microhardness and wear testing. When compared to conventional casting, the microhardness of the semisolid hypoeutectic Al-Si alloy improved by 9.8%. Sr addition at 0.43 wt.% resulted in a refined eutectic structure with a 17% increase in hardness over conventional casting. The globular structure α-Al formed during semisolid casting reduced porosity, and the addition of Sr refined the eutectic silicon into a fine fibrous structure that is tightly bound with the Al matrix. These are the primary factors that contribute to the high wear resistance in modified-Sr semisolid alloys.
Go to article

Authors and Affiliations

N.M. Anas
1
ORCID: ORCID
S.A. Zakaria
1
ORCID: ORCID
A.S. Anasyida
1
ORCID: ORCID
H. Mohamad
1
ORCID: ORCID
B.K. Dhindaw
2
ORCID: ORCID

  1. Universiti Sains Malaysia, Structural Niche Area. School of Mat erials & Mineral Resources Engineering, Engineering Campus, Malaysia 14300 Nibong Tebal, Pulau Pinang
  2. Indian Institute of Technology Kharagpur 721302, India
Download PDF Download RIS Download Bibtex

Abstract

The article presents the most important causes of the unstable connection between cast iron ring inserts and the silumin casting of an engine piston. It is shown that manufacturing defects are mainly related to the alfin processing of inserts in Al-Si alloy (the so-called AS9 alloy). Exceeding the permissible iron content in AS9 alloy causes the crystallization of brittle -Al5FeSi phases. Their unfavorable morphology and large size are the main reasons for the weakening of the diffusion connection between the inserts and the piston, causing an unacceptable proportion of defective products. The study presented in this work was conducted under industrial conditions on a population of 10.000 pistons. Quality control data, production parameters, as well as the micro- and macro-structures of the cast iron inserts, and the interface area between the inserts and the silumin piston, were analyzed. Material and technological solutions have been proposed to reduce the occurrence of casting defects at the insert-piston joint. This includes the introduction of so-called "morphological correctors" of the -Al5FeSi phases, reducing the possibility of gaseous impurities in the AS9 alloy and optimizing the temperature of the alfin alloy.
Go to article

Authors and Affiliations

M. Szucki
1
ORCID: ORCID
J. Piątkowski
2
ORCID: ORCID
M. Czerepak
3

  1. Foundry Institute, Technische Universität Bergakademie Freiberg, Bernhard-von-Cotta-Str. 4,09599 Freiberg, Germany
  2. Department of Material Technologies, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  3. Federal-Mogul Gorzyce sp. z o.o., Odlewników 52, 39-432 Gorzyce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the crystallization process of silumin by the TDA thermographic method and the results of the cast

microstructure obtained in the sampler ATD-10, that was cooling down in ambient air. The study was conducted for silumins AlSi8 and

AlSi11 unmodified. The work demonstrated that the use of thermal imaging camera allows for the measurement and recording the

solidification process of silumin. Thermal curve was registered with the infrared camera and derivative curve that was calculated on the

base of thermal curve have both a very similar shape to adequate them TDA curves obtained from measurements using a thermocouple.

Test results by TDA thermographic method enable quantitative analysis of the kinetics of the cooling and solidification process of hypoand

neareutectic silumins.

Go to article

Authors and Affiliations

R. Władysiak
T. Pacyniak
A. Kozuń
Download PDF Download RIS Download Bibtex

Abstract

In this work, the effect of the microstructure on corrosion behavior of selected Mg- and Al-based as cast alloys, was evaluated. The electrochemical examinations were carried out, and then a morphology of corrosion products formed due to local polarization on materials surface, was analyzed. It was documented that the presence of Mg2Si phase plays an important role in the corrosion course of Mg-based alloy. A selective etching was observed in sites of Mg2Si precipitates having “Chinese script”- like morphology. Analogous situation was found for Al-based alloy, where the key role was played by cathodic θ-CuAl2 phase.
Go to article

Authors and Affiliations

M.M. Lachowicz
R. Jasionowski
Download PDF Download RIS Download Bibtex

Abstract

Issues connected with high quality casting alloys are important for responsible construction elements working in hard conditions.

Traditionally, the quality of aluminium casting alloy refers to such microstructure properties as the presence of inclusions and intermetallic

phases or porosity. At present, in most cases, Quality index refers to the level of mechanical properties – especially strength parameters,

e.g.: UTS, YS, HB, E (Young’s Modulus), K1c (stress intensity factor). Quality indexes are often presented as a function of density.

However, generally it is known, that operating durability of construction elements depends both on the strength and plastic of the material.

Therefore, for several years now, in specialist literature, the concept of quality index (QI) was present, combines these two important

qualities of construction material. The work presents the results of QI research for casting hypoeutectic silumin type EN AC-42100

(EN AC-AlSi7Mg0.3), depending on different variants of heat treatment, including jet cooling during solution treatment.

Go to article

Authors and Affiliations

A. Garbacz-Klempka
Z. Kwak
E. Czekaj
J. Zych
Download PDF Download RIS Download Bibtex

Abstract

The cooling rate is one of the main tools available to the process engineer by means of which it is possible to influence the crystallisation

process. Imposing a desired microstructure on a casting as early as in the casting solidification phase widens significantly the scope of

technological options at disposal in the process of aluminium-silicon alloy parts design and application. By changing the cooling rate it is

possible to influence the course of the crystallisation process and thus also the material properties of individual microstructure

components. In the study reported in this paper it has been found that the increase of cooling rate within the range of solidification

temperatures of a complex aluminium-silicon alloy resulted in a decrease of values of the instrumented indentation hardness (HIT) and the

instrumented indentation elastic modulus (EIT) characterising the intermetallic phase occurring in the form of polygons, rich in aluminium,

iron, silicon, manganese, and chromium, containing also copper, nickel, and vanadium. Increased cooling rate resulted in supersaturation

of the matrix with alloying elements.

Go to article

Authors and Affiliations

A. Trytek
M. Tupaj
M. Mróz
A.W. Orłowicz
O. Markowska
Download PDF Download RIS Download Bibtex

Abstract

Trace elements Co, Cr were added to investigate their influence on the microstructure and physical properties of Al-Si extruded alloy. The Co, Cr elements were randomly distributed in the matrix, forms intermetallic phase and their existence were confirmed by XRD, EDS and SEM analysis. With addition of trace elements, the microstructure was modified, Si particle size was reduced and the growth rate of β-(Al5FeSi) phase limited. Compared to parent alloy, hardness and tensile strength were enhanced while the linear coefficient of thermal expansion (CTE) was significantly reduced by 42.4% and 16.05% with Co and Cr addition respectively. It is considered that the low CTE occurs with addition of Co was due to the formation of intermetallic compound having low coefficient of thermal expansion. The results suggested that Co acts as an effective element in improving the mechanical properties of Al-Si alloy.

Go to article

Authors and Affiliations

S.S. Ahn
P. Sharief
C.H. Lee
H.T. Son
Y.H. Kim
Y.C. Kim
S. Hong
S.J. Hong
Download PDF Download RIS Download Bibtex

Abstract

The present work discusses results of increased temperature on shape-dimensional changes of a 110 type hose coupling, produced from EN AC-AlSi11 alloy with the use of pressure die casting technology. The castings were soaked for 3.5 h at temperatures 460°C, 475°C and 490°C. The verification of shape-dimensional accuracy of the elements after soaking treatment, in relation to raw casting, was carried out by comparing the 3D models received from 3D scanning. Soaking temperature of about 460°C-475°C results in no significant changes in the shapes and dimensions of the castings, or surface defects in the form of blisters, which can be seen at a temperature of 490°C.

Go to article

Authors and Affiliations

A. Jarco
Download PDF Download RIS Download Bibtex

Abstract

This article presents a study of the crystallization and microstructure of the AlSi9 alloy (EN AC-AlSi9) used for the alfin processing of iron ring supports in castings of silumin pistons. Alfin processing in brief is based on submerging an iron casting in an Al-Si bath, maintaining it there for a defined time period, placing it in a chill mould casting machine and immersing it in the alloy. This technology is used for iron ring supports in the pistons of internal combustion engines, among others. Thermal analysis shows that when the AlSi9 alloy contains a minimal content of iron, nucleation and increase in the triple (Al)+Fe+(Si) eutectic containing the -Al8Fe2Si phase takes place at the end of the crystallization of the double (Al)+(Si) eutectic. Due to the morphology of the ”Chinese script” the -Al8Fe2Si phase is beneficial and does not reduce the alloy’s brittleness. After approx. 5 hours of alfin processing, the -Al5FeSi phase crystallizes as a component of the +Al5FeSi+(Si) eutectic. Its disadvantageous morphology is ”platelike” with sharp corners, and in a microsection of the surface, ”needles” with pointed corners are visible, with increases the fragility of the AlSi9 alloys.

Go to article

Authors and Affiliations

J. Piątkowski
ORCID: ORCID
M. Czerepak
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the characterization of structure, magnetic and mechanical properties of (FeNiCo)100-x(AlSi)x (x = 0, 5, 10, 15, 25) multicomponent alloys prepared by casting. The results of X-ray diffraction measurements, scanning electron microscopy observations and hardness and magnetic properties investigations are presented. The studies show that cast (FeNiCo)100-x(AlSi)x alloys reveal dendritic morphology and their phase composition depends on (Al + Si) content. For x ≤ 10 a face-centered cubic phase is observed, while the increase of Al and Si content results in a body-centered cubic phase formation. It leads to a fivefold increase of hardness from 88 HV to 526 HV. The investigated alloys have high magnetic induction reaching 170 emu/g, while their coercivity value is even up to 2.9 kA/m for x = 15, and strongly depends on chemical and phase composition.
Go to article

Authors and Affiliations

B. Kurowski
1
ORCID: ORCID
D. Oleszak
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska Str. 141, 02-507 Warsaw, Poland

This page uses 'cookies'. Learn more