Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The chosen, typical causes of quality defects of cast-iron „alphin” rings embedded in aluminum cast are being presented in this paper.

Diffusive joint of those inserts with the pistons casts is being used, due to extreme work conditions of destructive influence of the fuel mix

and variable thermo-mechanical loads, which reign in the combustion motor working chamber.

Go to article

Authors and Affiliations

J. Piątkowski
P. Kamiński
Download PDF Download RIS Download Bibtex

Abstract

The effect of possible modification and refining effect of Al-Cu-P-based pre-alloy combined with Fe on the microstructure and the silicon morphology change in hypereutectic Al-Si cast alloy was studied. The samples in the as-cast state were observed by optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The 3D morphology of both primary and eutectic silicon was observed by using colour and deep etching in detail. The results showed that the AlCu19P1.4 pre-alloy (1.07 wt.%) combined with the addition of Fe (0.02 wt.%) has a significant effect on the change of the amount, size and morphology of primary Si. This is significantly refined and changes the shape from a coarse irregular star-shaped, polyhedral, or plate-like shape to a fine polyhedral shape. The average size of the primary Si is reduced by about of 78 % from 135 μm to 28 μm and the number of primary Si particles increased from 7.4 to 237. No change in the morphology of the eutectic Si was observed; a refinement of the structure from a coarse needle/plate-like to a fine plate-like structure was seen. The depth etching method using HCl was very effective in the study of the 3D silicon morphology observed, which could be observed in detail without the presence of artefacts.
Go to article

Authors and Affiliations

Eva Tillová
1
ORCID: ORCID
Mária Chalupová
1
Lenka Kuchariková
1
ORCID: ORCID
Mirosław Bonek
2
ORCID: ORCID
Milan Uhríčik
1
Lucia Pastierovičová
1

  1. University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  2. Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents a study of the crystallization and microstructure of the AlSi9 alloy (EN AC-AlSi9) used for the alfin processing of iron ring supports in castings of silumin pistons. Alfin processing in brief is based on submerging an iron casting in an Al-Si bath, maintaining it there for a defined time period, placing it in a chill mould casting machine and immersing it in the alloy. This technology is used for iron ring supports in the pistons of internal combustion engines, among others. Thermal analysis shows that when the AlSi9 alloy contains a minimal content of iron, nucleation and increase in the triple (Al)+Fe+(Si) eutectic containing the -Al8Fe2Si phase takes place at the end of the crystallization of the double (Al)+(Si) eutectic. Due to the morphology of the ”Chinese script” the -Al8Fe2Si phase is beneficial and does not reduce the alloy’s brittleness. After approx. 5 hours of alfin processing, the -Al5FeSi phase crystallizes as a component of the +Al5FeSi+(Si) eutectic. Its disadvantageous morphology is ”platelike” with sharp corners, and in a microsection of the surface, ”needles” with pointed corners are visible, with increases the fragility of the AlSi9 alloys.

Go to article

Authors and Affiliations

J. Piątkowski
ORCID: ORCID
M. Czerepak

This page uses 'cookies'. Learn more