Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Flake graphite cast iron was hot-dip coated with pure aluminium or aluminium alloys (AlSi11 and AlTi5). The study aimed at determining

the influence of bath composition on the thickness, microstructure and phase composition of the coatings. The analysis was conducted by

means of an optical microscope and a scanning electron microscope with an EDS spectrometer. It was found that the overall thickness of a

coating was greatly dependent on the chemical composition of a bath. The coatings consisted of an outer layer and an inner intermetallic

layer, the latter with two zones and dispersed graphite. In all the cases considered, the zone in the inner intermetallic layer adjacent to the

cast iron substrate contained the Al5Fe2 phase with small amount of silicon; the interface between this phase and the cast iron substrate

differed substantially, depending on the bath composition. In the coatings produced by hot-dipping in pure aluminium the zone adjacent to

the outer layer had a composition similar to that produced from an AlTi5 bath, the Al3Fe phase was identified in this zone. The Al3Fe also

contained silicon but its amount was lower than that in the Al5Fe2. In the coatings produced by hot-dipping in AlSi11, the zone adjacent to

the outer layer contained the Al3FeSi phase. The analysis results showed that when AlSi11 alloy was applied, the growth mode of the inner

layer changed from inwards to outwards. The interface between the Al5Fe2 phase and the cast iron substrate was flat and the zone of this

phase was very thin. Locally, there were deep penetrations of the Al5FeSi phase into the outer layer, and the interface between this phase

and the outer layer was irregular. Immersion in an AlTi5 bath caused that the inner intermetallic layer was thicker than when pure

aluminium or AlSi11 alloy baths were used; also, some porosity was observed in this layer; and finally, the interface between the inner

layer and the cast iron substrate was the most irregular.

Go to article

Authors and Affiliations

R. Mola
T. Bucki
K. Wcisło
Download PDF Download RIS Download Bibtex

Abstract

Chromium low alloyed steel substrate was subjected to aluminizing by hot dipping in pure aluminium and Al-Si eutectic alloy at 750°C and 650°C respectively, for dipping time up to 45 minutes. The coated samples were subjected for investigation using an optical microscope, scanning electron microscopy (SEM), Energy-dispersive X-ray analyzer (EDX) and X-ray diffraction (XRD) technique. Cyclic thermal oxidation test was carried out at 500°C for 72 hours to study the oxidation behaviour of hot-dipped aluminized steel. Electrochemical corrosion behavior was conducted in 3wt. %NaCl aqueous solution at room temperature. The cyclic thermal oxidation resistance was highly improved for both coating systems because of the formation of a thin protective oxide film in the outermost coating layer. The gain in weight was decreased by 24 times. The corrosion rate was decreased from 0.11 mmpy for uncoated specimen to be 2.9 x10-3 mmpy for Aluminum coated steel and 5.7x 10-3 mmpy for Al-Si eutectic coated specimens. The presence of silicon in hot dipping molten bath inhabit the growth of coating intermetallic layers, decrease the total coating thickness and change the interface boundaries from tongue like shape to be more regular with flatter interface. Two distinct coating layers were observed after hot dipping aluminizing in Al bath, while three distinct layers were observed after hot dipping in Al-Si molten bath.
Go to article

Bibliography

[1] Kuruveri, U.B., Huilgol, P., Joseph, J. (2013). Aluminising of mild steel plates. ISRN Metallurgy. 1-6.
[2] Isiko, M.B. (2012). A luminizing of plain carbon steel: Effect of temperature on coating and alloy phase morphology at constant holding time. Norway. Institute for material technology. 1-2.
[3] Davis, J.R. (1990). Surface engineering. vol. 5 of ASM Metals Handbook. Ohio, USA Materials Park.
[4] Ahmad, Z. (2006). Principles of corrosion engineering and corrosion control. London: UK. Elsevier. 17.
[5] Burakowski T., Weirzchok, T. (2000). S urface engineering of Metals- Principles, Equipments, Technologies. CRC Press, London, UK.
[6] Pattankude1, B.G., Balwan,. A.R. (2019). A review on coating process. International Research Journal of Engineering and Technology (IRJET). 06(3), 7980.
[7] Huilgol, P., Bhat, S. & Bhat, K.U. (2013). Hot-dip aluminizing of low carbon steel using Al- 7Si-2Cu alloy baths. Journal of Coatings. 2013, 1-6.
[8] Lin, M.-B. Wang, C.-J. & Volinsky, A.A. (2011). Isothermal and thermal cycling oxidation of hot- dip aluminide coating on flake/spheroidal graphite cast iron. Surface and Coatings Technology. 206, 1595-1599.
[9] Dngik Shin, Jeong-Yong Lee, Hoejun Heo, & Chung-Yun Kang. (2018). Formation procedure of reaction phases in Al hot dipping process of steel. Metals journal. 1.
[10] Yu Zhang, Yongzhe Fan, Xue Zhao, An DU, Ruina Ma, & Xiaoming Cao. (2019). Influence of graphite morphology on phase, microstructure and properities of hot dipping and diffusion aluminizing coating on flake/spheroidal graphite cast iron. Metals journal. 1.
[11] Voudouris, N. & Angelopoulos, G. (1997). Formation of aluminide coatings on nickel by a fluidized bed CVD process. Surface Modification Technologies XI. 558-567.
[12] Wang, D. & Shi, Z. (2004). Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel. Applied surface science. Volume (227). 255-260.
[13] Murakami, K., Nishida, N., Osamura, K. & Tomota, Y. (2004). Aluminization of high purity iron by powder liquid coating. Acta Materialia. 52(5), 1271-1281.
[14] Cheng, W.-J. & Wang, C.-J. (2013). High-temperature oxidation behavior of hot-dipped aluminide mild steel with various silicon contents. Applied surface science. 274. 258-265.
[15] Mishra, B., Ionescu, M. & Chandra, T. (2013). The effect of Si on the intermetallic formation during hot dip aluminizing. Advanced Materials Research. Volume 922, 429-434.
[16] Kee-Hyun, et. Al. (2006). Observations of intermetallic compound formation of hot dip aluminized steel. Materials Science Forum. 519-521, 1871-1875.
[17] Fry, A., Osgerby, S., Wright, M. (2002). Oxidation of alloys in steam environments. United Kingdom: NPL Materials Centre. 6.
[18] Scott, D.A. (1992). Metallography and microstructure in ancient and historic metals. London. Getty publications. 57-63.
[19] Lawrence J. Korb, Rockwell, David L. Olson. (1992). ASM Handbook Vol 13: Corrosion: Fundametals, Testing and Protection. Florida, USA: ASM International Handbook Committee.
[20] Nicholls, J. E. (1964). Corr. Technol. 11.16.
[21] Azimaee, H. et. al. (2019). Effect of silicon and manganese on the kinetics and morphology of the intermetallic layer growth during hot-dip aluminizing. Surface and Coatings Technology. 357. 483-496.
[22] Sun Kyu Kim, (2013). Hot-dip aluminizing with silicon and magnesium addition I. Effect on intermertallic layer thickness. Journal of the Korean Institute of Metals and Materials. 51(11), 795-799.
[23] Springer, H., Kostka, A., Payton, Raabe, D., Kaysser, A. & Eggeler, G. (2011). On the formation and growth of intermetallic phases during interdiffusion growth between low-carbon steel and aluminum alloys. Acta Materialia. 59, 1586-1600.
[24] Kab, M., Mendil, S. & Taibi, K. (2020). Evolution of the microstructure of intermetallic compounds formed on mild steel during hot dipping in molten Al alloy bath. M etallography, Microstructure and Analysis. Journal 4.
[25] Bahadur A. & Mohanty, O.N. (1991). Materials Transaction. JIM. 32(11), 1053-1061.
[26] Bouche, K., Barbier, F. & Coulet, A. (1998). Intermetallic compound layer growth between solid iron and molten aluminium. Materials Science and Engineering A. 249(1-2), 167-175.
[27] Maitra, T. & Gupta, S.P. (2002). Intermetallic compound formation in Fe–Al–Si ternary system: Part II. Materials Characterization. 49(4), 293-311.
[28] Nychka, J.A. & Clarke, D.R. (2005). Quantification of aluminum outward diffusion during oxidation of FeCrAl alloys. Oxidation of Metals. 63 (Nos.5/6), 325-351.
[29] Lars, P.H. et. All. (2002). Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. Journal of Applied Physics. 92(3), 1649-1656.
[30] Murray, J.L. (1992). Fe–Al binary phase diagram, in: H. Baker (Ed.), Alloy Phase Diagrams. ASM International. OH- USA. Materials Park. 54.

Go to article

Authors and Affiliations

G.M. Attia
1
W.M.A. Afify
1
M.I. Ammar
1

  1. Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering Suez University, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The one-part geopolymer binder was synthesis from the mixing of aluminosilicate material with solid alkali activators. The properties of one-part geopolymers vary according to the type and amount of solid alkali activators used. This paper presents the effect of various sodium metasilicate-to-sodium aluminate (NaAlO2/Na2SiO3) ratios on fly ash-based one-part geopolymer. The NaAlO2/Na2SiO3 ratios were set at 1.0 to 3.0. Setting time of fresh one-part geopolymer was examined through Vicat needle apparatus. Mechanical and microstructural properties of developed specimens were analysed after 28 days of curing in ambient condition. The study concluded that an increase in NaAlO2 content delayed the setting time of one-part geopolymer paste. The highest compressive strength was achieved at the NaAlO2/Na2SiO3 ratio of 2.5, which was 33.65 MPa. The microstructural analysis revealed a homogeneous structure at the optimum ratio. While the sodium aluminium silicate hydrate (N-A-S-H) and anorthite phases were detected from the XRD analysis.
Go to article

Authors and Affiliations

Ooi Wan-En
1 2
Yun-Ming Liew
1 2
ORCID: ORCID
Heah Cheng Yong
2 3
ORCID: ORCID
Ho Li-Ngee
2 4
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Ong Shee-Ween
1 2
Andrei Victor Sandu
5
ORCID: ORCID

  1. Universiti Malaysia Perlis (UNIMAP), Center of Excellence Geopolymer and Green Technology (CEGEOGTECH), Kangar, 01000 Perlis, Malaysia
  2. Universiti Malaysia Perlis (UNIMAP), Faculty of Chemical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  3. Universiti Malaysia Perlis (UNIMAP), Faculty of Mechanical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  4. Universiti Malaysia Perlis (UNIMAP), Centre of Excellence Frontier Materials Research, FRONTMATEKANGAR, 01000 Perlis, Malaysia
  5. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, 700050, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

The paper presents preliminary results of research on the use of certain smelting slags in the process of modification of casting alloys, leading to a change in the structure of these alloys and improvement of their mechanical and operational properties. The positive effect of ground copper slag with a fraction below 0.1 mm on the effect of modifying the hypoeutectic silumin AlSi7Mg towards changing the morphology of coarse-grained eutectic to fine-dispersive was demonstrated. The modifying effect also applies to the pre-eutectic α phase and results in the formation of additional crystallization sites (nucleation process), which was demonstrated by the thermal ATD solidification analysis, showing an increase in the temperature Tliq and TEmax. The positive and noticeable influence of the mixture of copper and steel slag on the surface modifying effect of fragmentation of the structure was demonstrated in casting nickel superalloy IN-713C. Based on the results of research conducted so far on the modifying effect of cobalt aluminate, a hypothetical model of the impact of reduced metallic components of the applied metallurgical slags on the nucleation process and shaping of the microstructure of nickel alloys was developed.
Go to article

Bibliography

[1] A. Konstanciak, W. Sabela, Odpady w hutnictwie żelaza i ich wykorzystanie, Hutnik-Wiadomości Hutnicze 12, 572-580 (1999).
[2] P. Sobczyński, Żużle hutnicze – ich natura i przydatność gospodarcza, Odpady przemysłowe i komunalne, powstawanie i możliwości ich wykorzystania. Kraków (1999).
[3] J. Sitko, Modernizacja technologii zagospodarowania odpadów hutniczych, Systemy Wspomagania w Inżynierii Produkcji. Inżynieria systemów technicznych: E. Milewska (Red.), P.A. NOVA, 2 (14), 287-294 (2016).
[4] J. Sitko, Problem utylizacji odpadów, Zeszyty Naukowe Politechniki Śląskiej 73, 531-540 (2014).
[5] T . Stefanowicz, Otrzymywanie i odzysk metali oraz innych surowców ze ścieków i odpadów pogalwanicznych, Wydawnictwo Politechniki Poznańskiej 167-172 (1992).
[6] H. Byrdziak, A. Mizera, J. Piątkowski, KGHM Polska Miedź S.A. – Biuletyn (2000).
[7] D. Krupka, A. Chmielarz, A. Bojanowski, J. Sitko, Polskie srebro. Osiągnięcia produkcyjne i badawcze, III KN „Metale Szlachetne”, Zakopane – Kościelisko (2002).
[8] Z. Bonderek, S. Rzadkosz, Problemy uszlachetniania ciekłych stopów aluminium. Krzepnięcie Metali i Stopów, PAN Katowice 41-49 (1999).
[9] H. Postołek, C. Adamski, Wpływ napięć międzyfazowych na rafinujące oddziaływanie żużli, Archiwum Hutnictwa 38, 4 (1981).
[10] T . Kargul, Opracowanie hybrydowego modelu procesu pozapiecowej rafinacji stali do oceny wybranych technologii metalurgicznych, 2009 AGH, Kraków.
[11] D. Krupka, J. Sitko, B. Ochab i inni, Development of zinc production at the Boleslaw Zinc Plant, The IV International Conference Zinc ‘2006, Plovdiv, Bułgaria, 197-207 (2006).
[12] D. Krupka, J. Sitko, J. Dutrizac, G.E. James, Zakład Elektrolizy Cynku – BIG RIVER ZINC, Sauget w USA, Rudy Metale 46, 10, 461-469 (2001).
[13] S. Pietrowski, Siluminy, 2001 Wydawnictwo Politechniki Łódzkiej, Łódź.
[14] F. Binczyk, Konstrukcyjne stopy odlewnicze, 2003 Wydawnictwo Politechniki Śląskiej, Gliwice.
[15] J. Sitko, Procesy zagospodarowania odpadów hutniczych, Monografia habilitacyjna, 2019 P.A.NOVA, Gliwice.
[16] A. Hernas, Żarowytrzymałość Stali i Stopów, 2000 Wydawnictwo Politechniki Śląskiej, Gliwice.
[17] L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo – materiały inżynierskie z podstawami projektowania materiałowego, 2002 Wydawnictwa Naukowo-Techniczne, Warszawa.
[18] C.N. Wei, H.Y. Bor, C.Y. Ma, T.S. Lee, A study of IN-713LC superalloy grain refinement effects on microstructure and tensile properties, Materials Chemistry and Physics 80, 89-93 (2003).
[19] L. Liu, R. Zhang, L. Wang, S. Pang, B. Zhen, A new method of fine grained casting for nickle-base superalloys, Journal of Materials Processing Technology 77, 300-304 (1998).
[20] P. Gradoń, Procesy fizykochemiczne w układzie forma – modyfikator-ciekły stop kształtujące makro- i mikrostrukturę wybranych nadstopów niklu, Rozprawa doktorska, 2014 Politechnika Śląska, Katowice.
[21] Monografia KGHM Polska Miedź S.A. 2007 Lubin. [22] HSC Chemistry Software – http://www.outotec.com/en/Products-services/HSC-Chemistry/2013
[23] Dokumentacja techniczna programu HSC Chemistry (v. 4.1).
[24] J. Szala, Program komputerowy Met-Ilo, Katowice (2011).
[25] M. Zielińska, J. Sieniawski, M. Wierzbińska, Effect of modification on microstructure and mechanical properties of cobalt casting superalloy, Archives of Metallurgy and Materials 53, 3, 887-893 (2008).
[26] F. Binczyk, J. Śleziona, P. Gradoń, Modification of macrostructure of nickel superalloys with cobalt nanoparicles, Kompozyty 11:1. Polskie Towarzystwo Materiałów Kompozytowych 49-54 (2011).
[27] F. Binczyk, J. Śleziona, Effect of modification on the mechanical properties of IN-713C alloy, Archives of Foundry Engineering, Issue Special 1, 195-198 (2010).
[28] Existence of the Hexagonal Modification of Nickel, American Physical Society 10, 1140-1150 (1965).
Go to article

Authors and Affiliations

J. Sitko
1
ORCID: ORCID

  1. Silesian University of Technology, Department of Production Engineering, 26-28 Roosevelta Str., 41-800 Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

We investigated the effect of Cr thin film deposition on the thermal stability and corrosion resistance of hot-dip aluminized steel. A high-quality Cr thin film was deposited on the surface of the Al-9 wt. % Si-coated steel sheets by physical vapor deposition. When the Al-Si coated steel sheets were exposed to a high temperature of 500℃, Fe from the steel substrate diffused into the Al-Si coating layer resulting in discoloration. However, the highly heat-resistant Cr thin film deposited on the Al-Si coating prevented diffusion and surface exposure of Fe, improving the heat and corrosion resistances of the Al-Si alloy coated steel sheet.
Go to article

Authors and Affiliations

Jae-Hyeon Kim
1
Jung-Ha Lee
2
Seung-Beop Lee
2
Sung-Jin Kim
3
ORCID: ORCID
Min-Suk Oh
1
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering And Research Center For Advanced Materials Development, Jeonju, Republic of Korea
  2. Jeonbuk National University, School of International Engineering And Science, Jeonju, Republic of Korea
  3. Sunchon National University, Department of Advanced Materials Engineering, Sunchon, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Magnesium aluminate spinel (MgAl2O4) is an important refractory material of magnesia origin. It is formed by the reaction of magnesium and aluminum oxides. In this study, TiO2 was added to magnesite waste and alumina (Al2O3) powders in different proportions and the mixtures were sintered at different temperatures after shaping. The aim of this study was to produce spinel economically by recycling waste materials. Therefore, titanium dioxide (TiO2) added magnesium aluminate spinel was produced and the products obtained were characterized by XRD and SEM-EDS analyses. In addition, bulk density, apparent porosity and microhardness values were measured and the effects of TiO2 additive on magnesium aluminate properties were examined. The better values were determined in samples doped 4 wt.% TiO2 at the sintering temperature of 1400°C.
Go to article

Authors and Affiliations

N. Canikoğlu
1
ORCID: ORCID

  1. Sakarya University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Sakarya/Turkey

This page uses 'cookies'. Learn more