Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The population structure, seasonal and diel changes in vertical distribution of two siphonophore species, Dimophyes arctica and Pyrostephos vanhoeffeni , in Croker Passage (Antarctic Peninsula) are examined, and compared with the results obtained by other au− thors in various oceanic areas. Zooplankton samples were taken at discrete depth intervals between 0 and 1200 m during day and night shifts, in both summer and winter seasons. Dimophyes arctica was present both in polygastric and eudoxid forms, with the latter being dominant throughout the entire study period. The results obtained demonstrate that Antarctic waters clearly enhance the reproductive ability of this species when compared with specimens from other oceanic regions. Maximum densities of Dimophyes arctica were recorded in December in the 200–400 m depth horizon. However, high concentrations of eudoxids were also recorded at deeper parts of the water column. Pyrostephos vanhoeffeni was, in contrast, most abundant in autumn and winter, and both species were found to proliferate and disperse or sink further down the water column during autumn and winter. Daily vertical migration was observed only during the summer period.
Go to article

Authors and Affiliations

Anna A. Panasiuk-Chodnicka
Maria I. Żmijewska
Maciej Mańko
Download PDF Download RIS Download Bibtex

Abstract

During four Polish Geodynamical Expeditions to West Antarctica between 1979 and 1991, seismic measurements were made along 21 deep refraction profiles in the Bransfield Strait and along the coastal area of Antarctic Peninsula using explosion sources. Recordings were made by 16 land stations and 8 ocean bottom seismometers. Good quality recordings were obtained up to about 250 km distance. This allowed a detailed study of the seismic wave field and crustal structure. Three-dimensional tomographic inversion was carried out using first arriv­als from the complete data set including off-line recordings. As a result, we obtained a 3-D model of the P-wave velocity distribution in the study area. In the area adjacent to the Antarctic Peninsula coast, sedimentary cover of 0.2 to 3 km thickness was found, whereas in the shelf area and in the Bransfield Strait sedimentary basins with thickness from 5 to 8 km were observed. In the Bransfield Strait a high velocity body with Vp > 7.5 km/s was found at 12 km depth. The use of the off-line data allowed for determination of the horizontal extent of the body. The thickness of the crust varies from more than 35-40 km in the coastal area south of the Hero Fracture Zone to 30-35 km in the area of Bransfield Strait and South Shetland Islands and about 12 km in the Pacific Ocean NW of South Shetland Islands.

Go to article

Authors and Affiliations

Piotr Środa
Download PDF Download RIS Download Bibtex

Abstract

The well−known Jurassic macrofloras from Hope Bay at the northernmost tip of the Antarctic Peninsula continue to yield new taxa . This paper reports on a new type of plant re− productive organ. The affinity of this organ r emains unclear; it may be affiliated with the Schizaceae or Osmundaceae, but similarities to po llen organs of the Podocarpaceae are also discussed. Because the fossils differ from hitherto known Mesozoic fertile fronds and conifer pollen organs in some details, the new taxon, Spesia antarctica nov. gen. et sp. is proposed.
Go to article

Authors and Affiliations

Anna Maria Ociepa
Maria Barbacka
Download PDF Download RIS Download Bibtex

Abstract

The only record of the Paleogene Antarctic Sphenisciformes comes from the Eocene La Meseta Formation (Seymour Island, Antarctic Peninsula). The analysis of tarso− metatarsi attributed to the genus Anthropornis (“giant” penguins) from the Argentine, Polish and Swedish collections revealed an intriguing heterogeneity within these taxonomically important elements of the skeleton. The unique hypotarsal morphology challenges the current systematics of large−bodied penguins and sheds new light on their evolution.
Go to article

Authors and Affiliations

Carolina Acosta Hospitaleche
Piotr Jadwiszczak
Download PDF Download RIS Download Bibtex

Abstract

This study used ground penetrating radar soundings to examine a tongue-shaped rock glacier (64°04’S 58°25’W) on James Ross Island, Antarctic Peninsula, in January 2005. The rock glacier studied has multiple well-developed transverse ridges and approximately 800 m long from the talus of its head to its frontal slopes and is 300 m wide in the middle. The longitudinal ground penetrating radar profile identified debris bands which dip up-glacier, similar to the thrust structures in the compression zone of a valley glacier. Transverse ground penetrating radar profiles indicated a layered structure which is inclined towards the central part of the rock glacier and which resembles the transverse foliation of a valley glacier. Consequently, the internal structure of the rock glacier is revealed as being similar to the “nested spoons” common in the interior of valley glaciers. We concluded that this rock glacier has been created by the deformation of a glacier ice core and a thick and continuous debris mantle.

Go to article

Authors and Affiliations

Kotaro Fukui
Toshio Sone
Jorge A. Strelin
Cesar A. Torielli
Junko Mori
Download PDF Download RIS Download Bibtex

Abstract

The fossil record of Antarctic Sphenisciformes dates as early as the late Palaeocene Cross Valley Formation, Seymour Island, Antarctic Peninsula. However, the best known Antarctic locality for early penguin remains (mainly isolated bones) is the Eocene La Meseta Formation that outcrops in the northeast of Seymour Island. The analysis of an unstudied set of specimens collected there by members of the British Antarctic Survey in 1989 has resulted in identification of a distal humerus from the unit Telm3 (early Eocene) of the formation that is the oldest known bone attributable to a medium−sized (in the context of the entire Cainozoic era) penguin. This find suggests that the origin of these birds, in con− junction with an increase in taxonomic diversity of the Eocene Sphenisciformes, was related to the Early Eocene Climatic Optimum (EECO) or, more probably, the early phase of subsequent cooling.
Go to article

Authors and Affiliations

Piotr Jadwiszczak
Sandra D. Chapman
Download PDF Download RIS Download Bibtex

Abstract

A glacier lake outburst flood occurred on James Ross Island, Antarctic Peninsula region, during the 2004-2005 austral summer season. The source lake was located on the Lachman II ice-cored rock glacier, and formed prior to 1980. The size of the lake has been increasing gradually since the 1990s. The lake basin extended to approximately 220 m in length and 160 m in width by the end of February 2005. We observed that the lake had drained by February 2005, and found a deep gully on the south side of the lake rim. It appears that the lake level rose and water overflowed the lake rim here. James Ross Island contains a large number of debris-covered glaciers, ice-cored moraines, and rock glaciers with glacier lakes which are dammed by these features or which form upon them. As climatic warming has recently been reported for this region, further glacier lake outburst floods seem likely to occur.

Go to article

Authors and Affiliations

Toshio Sone
Kotaro Fukui
Jorge A. Strelin
Cesar A. Torielli
Junko Mori
Download PDF Download RIS Download Bibtex

Abstract

Large-scale stone-banked lobes and terraces are distributed over an area of 1 km2 of gentle slope on Rink Plateau in the northern part of James Ross Island, Antarctic Peninsula region. Topographically, there are two main features: relatively high risers up to 5 m high and distinct frontal ridges. In order to understand the processes responsible for these lobes and terraces, the authors have monitored air and ground temperatures and movement of stones on the surface over the period 1995-2005. In February 2005, the subsurface structures were surveyed by ground penetrating radar and drilling. The ground penetrating radar profiles identified the bedrock surface. The surface morphology of the lobes corresponds closely with that of the bedrock. The relatively high risers of these lobes are presumed to be due to a cessation of frontal advance.

Go to article

Authors and Affiliations

Junko Mori
Kotaro Fukui
Toshio Sone
Jorge A. Strelin
Cesar A. Torielli
Download PDF Download RIS Download Bibtex

Abstract

Previously, only three Candelariella species were known from Antarctica: C. aurella, C. flava and C. vitellina. After morphologically and phylogenetically examining our collections on soil from James Ross Island, located in the north-east Antarctic Peninsula region, and Horseshoe Island, a small rocky island in Bourgeois Fjord, Marguerite Bay in the south-west Antarctic Peninsula, we describe the lichen species Candelariella ruzgarii as new to science. Sequences of the nrITS, mtSSU and RPB1 gene regions of the new species were amplified and revealed that the phylogenetic position of the new species is in the C. aurella group, which is characterised by 8-spored asci and ± granular thalli. Candelariella ruzgarii is phylogenetically most closely related to C. aurella s. lat. but differs mainly in ecology as the new species grows on soil or on terricolous lichens, whereas the latter species grows on calcareous rocks, rarely on wood. Morphologically, C. ruzgarii is very similar to C. aggregata, a Northern Hemisphere species that grows on mosses and plant debris. Apart from the different phylogenetical position, C. ruzgarii has a thicker and sometimes slightly crenulated thalline margin and somewhat shorter ascospores than C. aggregata. We also report C. plumbea for the first time from Antarctica, a species with a thick and grey thallus that was previously known from Europe and Asia.
Go to article

Authors and Affiliations

Mehmet Gökhan Halici
1
ORCID: ORCID
Merve Kahraman Yiğit
1
ORCID: ORCID
Ekrem Bölükbaşı
2
ORCID: ORCID
Mithat Güllü
1
ORCID: ORCID

  1. Erciyes University, Department of Biology, Faculty of Science, Kayseri, Türkiye
  2. Amasya University, Department of Environmental Protection Technologies, Suluova Vocational School, Amasya, Türkiye
Download PDF Download RIS Download Bibtex

Abstract

The lithospheric transect South Shetland Islands (SSI) — Antarctic Peninsula (AP) includes: the Shetland Trench (subductional) and the adjacent portion of the SE Pacific oceanic crust; the South Shetland Microplate (younger magmatic arc superimposed on continental crust); the Bransfield Rift and Platform (younger back-arc basin); the Trinity Horst (older magmatic arc superimposed on continental crust); the Gustav Rift (Late Cenozoic) and James Ross Platform (older back-arc basin). Deep seismic sounding allowed to trace the Moho discontinuity at about 30 km under South Shetlands and at 38—42 km in the northern part of Antarctic Peninsula (Trinity Horst), under typical continental crust. Modified crust was recognized under Bransfield Strait. Geological interpretation based on deep seismic refraction and multichannel reflection soundings, and surface geological data, is presented.

Go to article

Authors and Affiliations

Krzysztof Birkenmajer
Aleksander Guterch
Marek Grad
Tomasz Janik
Edward Perchuć
Download PDF Download RIS Download Bibtex

Abstract

During the Polish Antarctic Geodynamic Expeditions, 1979-91, a wide geophysical and geological programme was performed in the transition zone between the Drake and South Shetland microplates and the Antarctic Plate, in West Antarctica. In the Bransfield Strait area, and along passive continental margin of the Antarctic Peninsula, 20 deep seismic sounding profiles were made. The interpretation yielded two - dimensional models of the crust and lithosphere down to 80 km depth. In the coastal area between the Palmer Archipelago and the Adelaide Island, the Earth's crust has a typical continental structure. Its thickness varies from 36 to 42 km in the coastal area, decreasing to about 25-28 km toward Pacific Ocean. In the surrounding of Bransfield Strait, the Moho boundary depth ranges from 10 km beneath the South Shetland Trench to 40 km beneath Antarctic Peninsula. The crustal structure beneath the Bransfield Strait trough is highly anomalous. Presence of a high-velocity body, with longitudinal seismic wave velocities Vp > 7,0 km/s, was detected there in the 6-32 km depth range. This inhomogeneity was interpreted as an intrusion, coinciding with the Deception-Bridgeman volcanic line. In the transition zone from the Drake Passage to the South Shetland Islands, a seismic boundary in the lower lithosphere occurs at a depth ranging from 35 to 80 km. The dip of both the Moho and this boundary is approximately 25° towards the southeast, indicating the direction of subduction of the Drake Plate lithosphere under the Antarctic Plate. Basing on the results of four Polish Geodynamic Expeditions, the map of crustal thickness in West Antarctica is presented.

Go to article

Authors and Affiliations

Aleksander Guterch
Marek Grad
Tomasz Janik
Piotr Środa

This page uses 'cookies'. Learn more