Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Arch bridges are built since two thousand years at least. Structural materials changed during this time. The design methods were changed also. The biggest impact was noted with development of Finite Element Method and graphical methods of preparation of technical drawings which is strictly combined with development of computers. These processes appeared also in Polish construction industry, especially from the beginning of 90-ties XX century.

But in this paper we do not consider mentioned above problems. We would like to present development of arch bridges from construction technology point of view. This aspect of creation of bridge structures is not very often the subject-matter of analysis. For many investors, design engineers and contractors optimization of structures is most important issue. For most of them the reduction of volume (weight) of structural material is only solution. But sometimes it is not true – the construction technology gives much more efficient results.

We present below examples of realization in Poland medium and large span arch bridges – steel, concrete and hybrid structures.

Go to article

Authors and Affiliations

Tomasz Siwowski
ORCID: ORCID
Henryk Zobel
ORCID: ORCID
Thakaa Al-Khafaji
ORCID: ORCID
Wojciech Karwowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Concrete-filled steel tube arch bridge is filled with concrete inside the steel tube. The radial constraint of the steel tube limits the expansion of the compression concrete, which makes the concrete in the three-way compression state, thus significantly improving the compressive strength of the concrete. At the same time, it can simplify the construction process and shorten the construction period. Since the rapid development of concretefilled steel tubular tied arch bridge in the 1990s, a large number of such Bridges have suffered from the defects of steel concrete, loose tie rod, and hanger rod rust, etc. Therefore, the reinforcement technology for various diseases has been studied, among which the reinforcement technology for hanger rod replacement is the most complicated and more difficult. As more and more bridges of this type enter the period of reinforcement, it ismore and more urgent to study the reinforcement technology of suspenders. Taking a bridge that has been in service for 23 years as an example, this paper discusses the construction method and construction monitoring of replacing the suspender, so as to guide the construction monitoring of the bridge. Finally, the construction monitoring results of the bridge are given, which can provide reference for the replacement of the suspender of this type of bridge.
Go to article

Authors and Affiliations

Kexin X. Zhang
1
ORCID: ORCID
Tianyu Y. Qi
2
ORCID: ORCID
Xingwei W. Xue
1
ORCID: ORCID
Yanfeng F. Li
1
ORCID: ORCID
Zhimin M. Zhu
3
ORCID: ORCID

  1. PhD., Eng., Shenyang Jianzhu University, School of Traffic Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  2. Master Degree Candidate, Shenyang Jianzhu University, School of Traffic Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  3. Master, Liaoning Urban Construction Design Institute Co. LTD, Shenyang, No.77-1 Jinfeng Street, Shenyang, China
Download PDF Download RIS Download Bibtex

Abstract

Stone arch bridge is an important type in the early bridge construction process because of its beautiful shape, material saving and economic rationality. However, stone material will deteriorate after long-term operation, which results in a decrease in strength and bearing capacity of stone arch bridge. The vehicle load is increasing at the same time. Therefore, accurate evaluation of bearing capacity of stone arch bridge is essential to ensure safety. In this article, a three-span open-spandrel stone arch bridge was taken as research object. Firstly, the bridge damages were investigated and analyzed in detail, and bridge service state was evaluated. Then, based on the evaluation results of disease damages and considering stone material deterioration, a refined finite element model of stone arch bridge was established to analyze bending moment, axial force, strain and deformation. Finally, static load test was carried out to test vertical deformation and stress of arch ring, horizontal displacement of pier, settlement of foundation and development of cracks. The results show that static load test is the most accurate method for evaluating bearing capacity of stone arch bridge. The evaluation accuracy of finite element model based on material correction is in the middle, and the evaluation accuracy of disease damage assessment is the worst. In practical work, bearing capacity of stone arch bridge can be evaluated by combining the three methods with high accuracy and comprehensive results.
Go to article

Authors and Affiliations

Hongshuai Gao
1
ORCID: ORCID
Hourui Duan
1
ORCID: ORCID
Yue Sun
1
ORCID: ORCID
Jiashuo Jian
1
ORCID: ORCID
Jingyuan Zhang
2
ORCID: ORCID
Hongbo Liu
1
ORCID: ORCID

  1. School of Civil Engineering, Heilongjiang University, Harbin 150080, PR China
  2. lnstitute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
Download PDF Download RIS Download Bibtex

Abstract

The problem of the arch barrel deformation in railway backfilled arch bridges caused by their typical service loads is analysed. The main attention is paid to vertical or radial displacements of characteristic points of the arch barrel. In the study results of deflection measurements carried out on single and multi-span backfilled arch bridges made of bricks or plain concrete during passages of various typical railway vehicles are used. On the basis of such results empirical influence functions of displacements are being created. In the next step, the results are utilised to estimate bending effects within the arch. The paper includes different procedures based on measurements of displacements in various points and directions. Using empirical influence functions arbitrary virtual load cases may be also considered. In this manner the proposed methodology shows a potential to be an effective tool of comprehensive calibration of numerical models of backfilled arch bridges on the basic of field tests carried out under any live loads.
Go to article

Authors and Affiliations

Tomasz Kamiński
1
ORCID: ORCID
Czesław Machelski
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wyb. Wyspianskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Two-way curved arch bridges inherit the fine tradition of masonry structures, making full use of the advantages of prefabricated assembly, it adapts to the situation of no support construction and no large lifting machine and tools, and has the characteristics of convenient construction method and saving material consumption. In appearance, the two-way curved arch bridge has strong national cultural characteristics. The prefabricated components of the two-way curved arch bridge are fragmentary, complicated in bearing and poor in integrity. Most of the two-way curved arch bridges in service have been built for a long time and lack of maintenance and management. Increasing the cross-section reinforcement method is one of the two-way curved arch reinforcement methods. It has a significant effect, convenient construction, good rigidity and stability characteristics after the reinforcement. Through theoretical analysis, combined with a static load test results of the assessment of the bridge reinforcement effect. Through load test, it is found that the deflection of the arch rib after reinforcement is reduced by 9%~19% and the strain of the arch rib is reduced by 12%~22%. Through finite element calculation, the crack width of the reinforced arch rib decreases by 8.3%~14.2%. The results show that the stress and deflection are greatly improved by the method of increasing section.
Go to article

Authors and Affiliations

Kexin X. Zhang
1
ORCID: ORCID
Tianyu Y. Qi
2
ORCID: ORCID
Xingwei W. Xue
1
ORCID: ORCID
Yanfeng F. Li
1
ORCID: ORCID
Zhimin M. Zhu
3
ORCID: ORCID

  1. PhD., Eng., Shenyang Jianzhu University, School of Traffic Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  2. Master Degree Candidate, Shenyang Jianzhu University, School of Traffic Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  3. Master, Liaoning Urban Construction Design Institute Co. LTD, Shenyang, No.77-1 Jinfeng Street, Shenyang, China

This page uses 'cookies'. Learn more