Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In Poland, researchers have a very strong interest in archaeometallurgy, which, as presented in classical works, focuses on dating artefacts

from the prehistoric and early medieval periods in the form of cast iron and copper castings. This study, extending the current knowledge,

presents the results of a microstructure investigation into the findings from the Modern era dating back to the late Middle Ages. The

investigated material was an object in the form of a heavy solid copper block weighing several kilograms that was excavated by a team of

Polish archaeologists working under the direction of Ms Iwona Młodkowska-Przepiórowska during works on the marketplace in the city of

Czestochowa during the summer of 2009. Pre-dating of the material indicates the period of the seventeenth century AD.

The solid copper block was delivered in the form of a part shaped like a bell, named later in this work as a “kettlebell”. To determine the

microstructure, the structural components, chemical composition, and homogeneity, as well as additives and impurities, investigations

were carried out using light microscopy, scanning electron microscopy including analysis of the chemical composition performed in

micro-areas, and qualitative X-ray phase analysis in order to investigate the phase composition.

Interpretation of the analytical results of the material’s microstructure will also help modify and/or develop new methodological

assumptions to investigate further archaeometallurgical exhibits, throwing new light on and expanding the area of knowledge of the use

and processing of seventeenth-century metallic materials.

Go to article

Authors and Affiliations

Ł. Wierzbicki
K. Głowik-Łazarczyk
J. Konieczny
K. Labisz
J. Ćwiek
Download PDF Download RIS Download Bibtex

Abstract

Modern archaeological research uses physico-chemical methods to answer questions beyond the scope of the conventional historian’s workshop. This applies to research on the borderline of fields, including material research into the elemental and isotopic composition of artefacts. The results of such analyses make it possible to address issues relating to the distribution of raw materials and the technology of artefact production. The paper discusses the SEM-EDS and LA-ICP-QMS micro-analysis methodology, addressing the limitations that result from the specification of techniques and the state of preservation of archaeological artefacts due to corrosion processes and conservation treatment. We present the preliminary results of technological research and provenance study of early medieval objects made of silver alloys, considered by typological group, i.e. coins, cake, and jewellery. Two hundred objects were analysed, revealing clear evidence for the use of remelted dirhams as the main source of raw material. The results of the research allowed for a material description of the phenomenon of the existence of cores in cross denarii, distinguishing two types of cores: based on copper and brass. In the case of jewellery, the research provided evidence for technological distinction, indicating the use of copper-based solders, as well as tin- and lead-based dolders, which have analogies in goldsmithing material from the Czech Republic. Recipes based on the marked composition are described in ancient sources. Silver cakes, on the other hand, can be divided into three extraction groups related to the degree of purification of the raw material. The preliminary results indicate that these objects were made of Asian dirhams and native lead, perhaps as an additive in the cupellation process.
Go to article

Authors and Affiliations

Ewelina Miśta-Jakubowska
1
ORCID: ORCID

  1. National Centre for Nuclear Research, Andrzeja Sołtana 7, PL 05–400 Otwock, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the most interesting categories of artifacts for archaeometallurgical research includes deposits of bronze items, so-called “metallurgists hoards”. They contain, aside of final products, many fragments of raw material and, moreover, metallurgical tools. An important source for the studies on the history of metallurgical technology is hoard from Przybysław, Greater Poland district.
Thus, the aim of the work is the identification and interpretation of bronze-working practices and strategies adopted by prehistoric communities of the Late Bronze Age and the Early Iron Age (ca. 600 BC). The examined objects are characterized in terms of their design, structure, and chemical composition. The methods chosen for the studies of artifacts include: metallographic macro- and microscopic observations using optical microscopy (OM) and scanning electron microscopy (SEM), the analysis of chemical composition with the methods of energy dispersive X-ray spectroscopy (EDS), and X-ray fluorescence (ED-XRF).
The thermodynamic analysis of the alloys was performed on the basis of the CALPHAD method. The experimental melts allowed to verify the theoretical considerations and to determine the characteristic temperatures of changes.
The old casting technology can be analyzed basing on computer modeling and computer simulation methods. Simulations in the MAGMASOFT® software are a good example to illustrate how to fill a mould cavity with a molten bronze for a hoop ornament. It is also an appropriate tool to determine temperature distribution in a mould. The simulations also show the possible disadvantages with this old technology.
Go to article

Authors and Affiliations

A. Garbacz-Klempka
1
ORCID: ORCID
M. Piękoś
1
ORCID: ORCID
M. Perek-Nowak
2
ORCID: ORCID
J. Kozana
1
ORCID: ORCID
P. Żak
1
ORCID: ORCID
A. Fijołek
1
ORCID: ORCID
P. Silska
3
ORCID: ORCID
M. Stróżyk
3
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Historical Layers Research Centre, Kraków, Poland
  2. AGH University of Science and Technology, Faculty of Non Ferrous Metals, Historical Layers Research Centre, Kraków, Poland
  3. Archaeological Museum in Poznań, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Assessing the level of metallurgical and foundry technology in prehistoric times requires the examination of raw material finds, including elongated ingots, which served as semi-finished products ready for further processing. It is rare to find such raw material directly at production settlements, but Wicina in western Poland is an exception. During the Hallstatt period (800-450 BC), this area, situated along the middle Oder River, benefited from its favorable location in the heart of the Central European Urnfield cultures and developed networks for raw material exchange and bronze foundry production. Numerous remnants of casting activities, such as clay casting molds, casting systems, and raw materials, have been discovered at the Wicina settlement. This article aims to provide an archaeometallurgical interpretation of raw material management and utilization by prehistoric communities during the Early Iron Age. To achieve this, a collection of 31 ingots from the defensive settlement in Wicina, along with two contemporary deposits from Bieszków and Kumiałtowice, both found within a 20 km radius of the stronghold, were studied. Investigations were conducted using a range of methods, including optical microscopy(OM), scanning electron microscopy (SE M), energy-dispersive X-ray spectroscopy (SE M-EDS), X-ray fluorescence spectroscopy (ED-XRF), powder X-ray diffraction (PXRD), AAS and ICP-OES spectrometer. The significance of ingots is examined in the context of increasing social complexity and the rising popularity of bronze products, which necessitated diversified production and a demand for raw materials with different properties and, consequently, different chemical compositions.
Go to article

Authors and Affiliations

A. Garbacz-Klempka
1
ORCID: ORCID
K. Dzięgielewski
2
ORCID: ORCID
M. Wardas-Lasoń
3
ORCID: ORCID

  1. AGH University Of Krakow, Faculty of Foundry Engineering, Historical Layers Research Centre, ul. Reymonta 23, 30-059 Krakow, Poland
  2. Jagiellonian University, Institute of Archaeology, ul. Gołębia 11, 31-007 Krakow, Poland
  3. AGH University Of Krakow, Faculty of Geology, Geophysics And Environmental Protection, Historical Layers Research Centre, al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Archaeometallurgical investigations presented in this work focus on analysing the microstructure as well as mechanical properties of artefacts from the17th in form of findings performed from cast iron as well as copper casts. The presented research results extend the up-to-date knowledge and present the analysis of structural compounds found in the microstructure of the artefacts from the time dating back to the late Middle Ages in the region around Czestochowa, Poland. The tested samples were found in earth in the city centre under the present marketplace. The excavation works were carried out in summer in the year 2009, and have resulted in the excavation of artefacts in form of copper block of the weight of several kg. The excavation action was led by a group of Polish archaeologists collaborating with the local authorities. The performed pre-dating of this element determines the age of the artefacts as the 17th century AD. The excavations that have been taking place since 2007 have widened the knowledge of the former Czestochowa. Historians of this town have suggested, that the found weight and traces of metallurgical activity suggest that the exposed walls were an urban weight. The weight is visible on the 18th century iconography. What was find on the Old Market indicates that there was a lush economic life before the Swedish invasion in this part of Poland. Some buildings lost their functions or were changed, others died in fires, but new places developed. To describe the microstructure, with its structural components, research was done using microscopy techniques, both of the light as well as electron microscopy (SEM), also chemical composition analysis was carried out using the EDS technique, as well as tool for phase analysis were applied in form of X-Ray Diffraction (qualitative analysis), especially for the reason to describe the phases present in the excavated material. This research will help to obtain new information in order to investigate further archaeometallurgical artefacts, extending the knowledge about middle age metallic materials its usage and manufacturing.
Go to article

Authors and Affiliations

Ł. Wierzbicki
J. Konieczny
K. Labisz
K. Głowik-Łazarczyk
S. Surma
S. Jurczyk
Download PDF Download RIS Download Bibtex

Abstract

This study characterizes the bronze jewellery recovered from the Lusatian culture urn-field in Mała Kępa (Chełmno land, Poland). Among

many common ornaments (e.g. necklaces, rings, pins) the ones giving evidence of a steppe-styled inspiration (nail earrings) were also

identified. With the dendritic microstructures revealed, the nail earrings prove the implementing of a lost-wax casting method, whereas

some of the castings were further subjected to metalworking. The elemental composition indicates the application of two main types of

bronze alloys: Cu-Sn and Cu-Sn-Pb. It has been established that the Lusatian metalworkers were familiar with re-melting the scrap bronze

and made themselves capable of roasting the sulphide-rich ores.

The collection from Mała Kępa has been described in terms of its structure and composition. The investigations were made by means of

the energy dispersive X-ray fluorescence spectroscopy (ED-XRF), scanning electron microscopy (SEM) coupled with an energy dispersive

X - ray analysis system (EDS) and optical microscopy (OM). In order to fingerprint an alloy profile of the castings with a special emphasis

on the nail earrings, the data-set (ED-XRF, EDS) was statistically evaluated using multidimensional analyses (FA, DA).

Go to article

Authors and Affiliations

M. Perek-Nowak
A. Garbacz-Klempka
Ł. Kowalski
J. Gackowski
Download PDF Download RIS Download Bibtex

Abstract

The research focuses on assessing the metal content, mainly copper, lead, iron and also silver in metallurgical slag samples from the area

where historical metallurgical industry functioned. In the smelter located in Mogiła, near Krakow (southern Poland), whose operation is

confirmed in sources from 1469, copper was probably refined as well as silver was separated from copper. Based on the change of

chemical and soil phase content and also taking cartographic and historical data into account, considering the restrictions resulting from

the modern land use the area was determined whose geochemical mapping can point to the location of the 15th century Jan Thurzo’s

smelter in Mogiła near Krakow. Moreover, using the same approach with the samples of this kind here as with hazardous waste, an

attempt has been made to assess their impact on the environment. Thereby, taking the geoenvironmental conditions into account, potential

impact of the industrial activity has been assessed, which probably left large scale changes in the substratum, manifested in the structure,

chemical content and soil phase changes. Discovering areas which are contaminated above the standard value can help to identify

historical human activities, and finding the context in artefacts allows to treat geochemical anomalies as a geochronological marker. For

this purpose the best are bed sediments, at present buried in the ground, of historical ditches draining the area of the supposed smelter.

Correlating their qualities with analogical research of archeologically identified slags and other waste material allows for reconstructing

the anthropopressure stages and the evaluation of their effects. The operation of Jan Thurzo’s smelter is significant for the history of

mining and metallurgy of Poland and Central and Eastern Europe.

Go to article

Authors and Affiliations

J. Kozana
M. Piękoś
A. Garbacz-Klempka
Z. Kwak
M. Wardas-Lasoń
Download PDF Download RIS Download Bibtex

Abstract

The article presents chosen aspects of foundry engineering of the settlement dwellers, including the archaeometric characteristics and

metal science analysis of the artefacts, as well as an attempted reconstruction of the production organization. Discovered in Szczepidło

(Greater Poland), the foundry workshop is unique in Central European Bronze Age.

This workshop foundry operated roughly XIV-XII Century BC. Its production is evidenced by the presence of markers of the whole

production cycle: semi-finished and finished products, production waste, fragments of crucibles and casting ladles with traces of usage,

and tools. On this basis, the alloys and foundry technologies used have been described.

The analysis of foundry technology of copper alloys in the settlement area was carried out by observing the surface and structure of the

products, semi-finished artefacts and fragments of crucibles by applying optical microscopy (OM), confocal microscopy (CLSM) and Xray

radiography (RT). The investigations of compositions were made by means of the energy dispersive X-ray fluorescence spectroscopy

(ED-XRF) and scanning electron microscopy (SEM) coupled with an energy dispersive X-ray analysis system (EDS).

Go to article

Authors and Affiliations

T. Tokarski
A. Garbacz-Klempka
P. Makarowicz
Download PDF Download RIS Download Bibtex

Abstract

This preliminary study characterizes the bronze metalworking on a defensive settlement of the Lusatian culture in former Kamieniec

(Chełmno land, Poland) as it is reflected through casting workshop recovered during recent excavations. Among ready products, the ones

giving evidence of local metallurgy (e.g. casting moulds and main runners) were also identified. With the shrinkage cavities and dendritic

microstructures revealed, the artifacts prove the implementing a casting method by the Lusatian culture metalworkers. The elemental

composition indicates application of two main types of bronzes: Cu-Sn and Cu-Pb. Aside these main alloying additions, some natural

impurities such as silver, arsenic, antimony and nickel were found which may be attributed to the origin of the ore and casting technology.

The collection from Kamieniec was described in terms of its structure and composition. The investigations were made by means of the

energy dispersive X-ray fluorescence spectroscopy (ED-XRF), scanning electron microscopy (SEM) coupled with an energy dispersive Xray

analysis system (EDS) and optical microscopy (OM). In order to fingerprint either local or non-local profile of the alloys, the ED-XRF

data-set was statistically evaluated using a factor analysis (FA).

Go to article

Authors and Affiliations

M. Perek-Nowak
J. Kozana
M. Piękoś
A. Garbacz-Klempka
Ł. Kowalski
J. Gackowski
G. Szczepańska
Download PDF Download RIS Download Bibtex

Abstract

During excavation of the cremation cemetery of urnfield culture in Legnica at Spokojna Street (Lower Silesia, Poland), dated to 1100-700

BC, the largest - so far in Poland – a collection of casting moulds from the Bronze Age was discovered: three moulds for axes casting

made out of stone and five moulds for casting sickles, razors, spearhead and chisels, made out of clay. This archaeological find constituted

fittings of foundrymen’s graves. In order to perform the complete analysis of moulds in respect of their application in the Bronze Age

casting technology analytical methods, as well as, computer aided methods of technological processes were used. Macroscopic

investigations were performed and the X-ray fluorescence spectrometry method was used to analyse the chemical composition and metal

elements content in mould cavities. Moulds were subjected to three-dimensional scanning and due to the reverse engineering the geometry

of castings produced in these moulds were obtained.

The gathered data was used to perform design and research works by means of the MAGMA5

software. Various variants of the pouring

process and alloys solidification in these archaeological moulds were simulated. The obtained results were utilised in the interpretation of

the Bronze Age casting production in stone and clay moulds, with regard to their quality and possibility of casting defects occurrence

being the result of these moulds construction.

The reverse engineering, modelling and computer simulation allowed the analysis of moulds and castings. Investigations of casting moulds

together with their digitalisation and reconstruction of casting technology, confirm the high advancement degree of production processes

in the Bronze Age.

Go to article

Authors and Affiliations

A. Garbacz-Klempka
Z. Kwak
T. Stolarczyk
M. Szucki
P.L. Żak
D. Ścibior
K. Nowak

This page uses 'cookies'. Learn more