Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Molecular motors are nature’s nanomachines, and are the essential agents of movement that are an integral part of many living organisms. The supramolecular machine, called the nuclear pore complex (NPC), controls the transport of all cellular material between the cytoplasm and the nucleus that occurs naturally in all biological cells. In the presence of appropriate chemical stimuli, the NPC opens or closes, like a gating mechanism, and permits the flow of material into and out of the nucleus. As a first step in understanding the design characteristics of the NPC, nanoscale studies were conducted to understand the transport characteristics of an idealized NPC model using CFD analysis, discrete element transport and coupled fluid-solid analysis. Results of pressure and velocity profiles obtained from the models indicate that the fluid density, flexibility of walls and the geometry of the flow passage are important in the design of NPC based nano- and micro-motors.

Go to article

Authors and Affiliations

R.M. Pidaparti
P.W. Longest
A.T. Hsu
H.U. Akay
Download PDF Download RIS Download Bibtex

Abstract

The knowledge whether and how chemical species react with tissues is important because of protection against harmful factors, diagnose of dermatological diseases, validation of dermatological procedures as well as effectiveness of topical therapies. In presented work the effects of chemical agents on plates of human fingernails were studied using Atomic Force Microscopy and Scanning Electron Microscopy. Apart from that, mapping of the elastic properties of the nails was also carried out. To obtain reliable measures of spatial evolution of the surface variations, recorded images were analyzed in terms of scaling invariance brought by fractal geometry, instead of common though not unique statistical measures.

Go to article

Authors and Affiliations

S. Kulesza
M. Bramowicz
M. Gwoździk
S. Wilczyński
A.M. Goździejewska
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study was to deposit directly chromium with diamond nanoparticles (ND) on aluminum alloys and investigate the coating surface. The chromium coatings on aluminum alloys were obtained by electrochemical deposition. The coatings were doped with ND. The diamond nanoparticles were obtained by detonation synthesis. Chromium coatings were deposited on aluminum alloys with a silicon content of 7 % and 10 %. The ND concentration in the electrolyte was 25 g/l. The surface analysis was performed by means of Atomic force microscopy. The surface of the coating of chromium with ND on Al10Si is twice more even than that on Al7Si. The microstructure and microhardness were examined with a metallographic microscope and a microhardness tester. The microhardness of the coated samples is 9163 MPa compared to 893 MPa of uncoated aluminum samples. The thickness of the chromium coatings doped with diamond nanoparticles is between 45 – 55 μm. The coatings are dense, continuous and uniform with good adhesion to the substrate material.

Go to article

Authors and Affiliations

V. Petkov
R. Valov
S. Simeonova
M. Kandeva

This page uses 'cookies'. Learn more