Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Eco-friendly leather processes based on the usage of natural products have become a potentially attractive issue for leather industry during the last few decades. Synthetic protective chemicals like bactericides used in most soaking process are known as hazardous substances and cause tannery effluents with high concentrations of Chemical Oxygen Demand (COD). In the present study, the effect of tannic acid on microorganisms, skin, wool and effluent were investigated in order to demonstrate the applicability of tannic acid in soaking process instead of commonly used bactericides. The bacterial load (cfu/ml), COD and Nitrogen Content (N) of the soaking effluents and Total Kjeldahl Nitrogen (TKN) content of skins and wools were investigated. Application of 0.5 and 1 wt% tannic acid concentrations was more effective than commercial bactericide, while comparable results were achieved by 0.1 and 0.3 wt% tannic acid. The application of tannic acid for soaking process resulted in lower COD and N values of effluents. The results show that tannic acid has the potential to be an alternative, eco-friendly bactericide for leather industry by reducing the pollution of leather soaking process.

Go to article

Authors and Affiliations

Arife Candaş Adigüzel Zengin
Selime Menteş Çolak
Gökhan Zengin
Eylem Kiliç
Download PDF Download RIS Download Bibtex

Abstract

Chlorocresol nanoemulsion disinfectant (CND) is an environmental disinfectant prepared with nanoemulsion as its drug carrier. This study aimed to investigate the bactericidal effect of CND on Staphylococcus aureus ( S. aureus) and its effect on bacterial ultrastructure. The neutralizing effect of CND against S. aureus was first screened by suspension quantitative evaluation experiment procedure of neutralizer. Disinfection performance was evaluated by the determination of Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), quantitative bactericidal experiment, and comparative experiment of disinfection performance between 0.1% CND and 0.1% chlorocresol aqueous solution. Meanwhile, the effect of CND on the ultrastructure of S. aureus was investigated with scanning electron microscope (SEM) and transmission electron microscope (TEM) to preliminarily explore the bactericidal mechanism. The results showed that 3% Tween-80 in PBS could be screened as the neutralizer of CND against S. aureus. MIC and MBC were 100 μg/mL and 200 μg/mL, respectively. The bactericidal rates were all 100% when 0.06% and 0.08% disinfectant acted for 15 and 5 min, respectively. Furthermore, compared with 0.1% chlorocresol aqueous solution, the bactericidal effect of 0.1% CND was significantly enhanced (p<0.01). After treatment with CND for 10 min, SEM observation showed that the morphology of S. aureus cells were changed and the integrity destroyed. TEM observation showed that the cell shape changed, and the structures of the cell wall, cell membrane and cytoplasm were damaged in varying degrees. CND showed the strong bactericidal effect on S. aureus and could cause ultrastructure alterations of S. aureus.
Go to article

Bibliography

References:

Abdelmonem R, Younis MK, Hassan DH, El-Sayed Ahmed M, Hassanein E, El-Batouty K, Elfaham A (2019) Formulation and characterization of chlorhexidine HCl nano-emulsion as a promising antibacterial root canal irrigant: in-vitro and ex-vivo studies. Int J Nanomedicine 14: 4697-4708.
Badruddoza AZ, Gupta A, Myerson AS, Trout BL, Doyle PS (2018) Low energy nanoemulsions as templates for the formulation of hydrophobic drugs. Adv Ther 1: 1700020.
Boyce JM (2016) Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control 5: 10.
Chen LH, Cheng LC, Doyle PS (2020) Nanoemulsion-loaded capsules for controlled delivery of lipophilic active ingredients. Adv Sci 7: 2001677.
Chepurnov AA, Bakulina LF, Dadaeva AA, Ustinova EN, Chepurnova TS, Baker JR Jr (2003) Inactivation of Ebola virus with a surfactant nanoemulsion. Acta Trop 87: 315-320.
Dancer SJ (2014) Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev 27: 665-690.
Eissa M, Ashour ED, Mansy MS (2012) Neutralizer evaluation study of some microbial isolates against two strong disinfectants with and without the presence of synthetic detergent. World Appl Sci J 20: 823-831.
Hamouda T, Hayes MM, Cao Z, Tonda R., Johnson K, Wright DC, Brisker J, Baker JR Jr (1999) A novel surfactant nanoemulsion with broad-spectrum spori-cidal activity against Bacillus species. J Infect Dis 180: 1939-1949.
Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR Jr (2001) A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 156: 1-7.
Han JH, Sullivan N, Leas BF, Pegues DA, Kaczmarek JL, Umscheid CA (2015) Cleaning hospital room surfaces to prevent health care-associated infections: a technical brief. Ann Intern Med 163: 598-607.
Hashemnejad SM, Badruddoza AZ, Zarket B, Ricardo Castaneda C, Doyle PS (2019) Thermoresponsive nanoemulsion-based gel synthesized through a low-energy process. Nat Commun 10: 2749.
Hidber T, Pauli U, Steiner A, Kuhnert P (2020) In vitro and ex vivo testing of alternative disinfectants to currently used more harmful substances in footbaths against Dichelobacter nodosus. PLoS One 15: e0229066.
Horstmann Risso N, Ottonelli Stopiglia CD, Oliveira MT, Haas SE, Ramos Maciel T, Reginatto Lazzari N, Kelmer EL, Pinto Vilela JA, Beckmann DV (2020) Chlorhexidine nanoemulsion: a new antiseptic formulation. Int J Nanomedicine 15: 6935-6944.
Hu GZ, Qiu YS (2010) Medicines commonly used in poultry and their rational use. Henan Science and Technology Press, Zhengzhou, p 27.
Matsubara T, Maki S, Toshimori Y (2021) The effectiveness of a nonalcoholic disinfectant containing metal ions, with broad antimicrobial activity. Sci Rep 11: 1072.
Ministry of Health of the People’s Republic of China (2008) Technical standard for disinfection. Ministry of Health of the People’s Republic of China, Beijing, pp 21-52.
Mu SY, Liu DY, Bai YZ, Yang WY, Shi YL, Li S, Ning MX, Yang XF (2016) Disinfection efficacy of chlorocresol nanoemulsion disin-fectant. Chin J Vet Med 52: 35-37.
Ramalingam K, Frohlich NC, Lee VA (2013) Effect of nanoemulsion on dental unit waterline biofilm. J Dent Sci 8: 333-336.
Roedel A, Vincze S, Projahn M, Roesler U, Robé C, Hammerl JA, Noll M, Al Dahouk S, Dieckmann R (2021) Genetic but no phenotypic associations between biocide tolerance and antibiotic resistance in Escherichia coli from german broiler fattening farms. Microorganisms 9: 651.
Wei QH, Zhang WF, Wang CD, Lu Y, Wang JY, Zhang M (2004) Experimental observation on properties of a compound germicidal nanoemulsion. Chin J Dis 21: 1-4.
Yang XF, Qi YH, Ning HM, Wang QH (2012) Preparation and quality evaluation of enrofloxacin nanoemulsion. J Zhejiang Univ (Agric & Life Sci) 38: 693-699.
Yang XF, Sun YW, Mu SY, Liu DY, Hu JH, Xu YZ, Bai YZ, Shi YL (2016) Evaluation of characterization and disinfection efficacy of chlorocresol nanoemulsion disinfectant. RSC Adv 6: 12730-12736.
Yin M, Zhang DL, Sun YJ, Li XH, Li YY, Xu P, Xue MQ, Jin MY, Yang XF (2020) Fungicidal effect of chlorcresol nanoemulsion disinfectant. J Northwest A&F Univ (Nat Sci Ed) 48: 18-23.
Go to article

Authors and Affiliations

Y.F. Zhang
1
Y.W. Sun
1
X.H. Liu
1
Z.X. An
1
X.F. Yang
1

  1. College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Hualan Road No. 90, Xinxiang City, Henan Province, 453003, China
Download PDF Download RIS Download Bibtex

Abstract

Koumiss has beneficial therapeutic effects on bacterial diseases. Four antibacterial com- pounds from yeasts ( Kluyveromyces marxianus and Saccharomyces cerevisiae) in koumiss were evaluated for their antibacterial effects against three Gram-negative bacteria, three Gram-positive bacteria and five pathogenic Escherichia coli strains. The antibacterial compounds from yeasts in koumiss were extracted, and their main components were determined. The inhibition zones were analyzed, and their minimum inhibition concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined. Aqueous phases of Kluyveromyces marxianus and Saccharomyces cerevisiae at pH 2.0 and 8.0 produced larger inhibition zones than those in other phases, and then antibacterial compounds from K. marxianus (K2, pH=2.0; K8, pH=8.0) and S. cerevisiae (S2, pH=2.0; S8, pH=8.0) were obtained. Their main components were organic acids and killer toxins. K2 had more propanoic acid and S2 had more oxalic acid than others. The inhibition zones of K2, K8, S2 and S8 against three Gram-negative bacteria and three Gram-positive bacteria were 12.03-23.30 mm, their MICs were 0.01-0.13 g/mL, and MBCs were 0.03-0.50 g/mL. Meantime, the inhibition zones of K2, K8, S2 and S8 against five pathogenic E. coli were 16.10-25.26 mm, their MICs were 0.03-0.13 g/mL, and MBCs were 0.13-1.00 g/mL. These four antibacterial compounds from yeasts in koumiss had broad antibacterial spectrum. In addition, K2 and S2 were better than K8 and S8.
Go to article

Authors and Affiliations

Y.J. Chen
1 2
C.G. Du
1 3
Y.Q. Guo
1
Y.F. Zhao
1
C. Aorigele
2
C.J. Wang
3
H. Simujide
2
W. Aqima
2
X.Y. Zhang
1

  1. Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, P.R. China
  2. College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
  3. College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China

This page uses 'cookies'. Learn more