Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

BacBinh is a sand dune area located in the southern part of central Vietnam. This area is confronted with a lack of water supply. The project aims to investigate the site for artificial recharge (AR) and the management of aquifer recharge (MAR) in the sand dune area. The geological setting of the area is characterised by ryo-dacitic bedrock, which forms steep isolated hills (up to 300 m a.s.l.) overlain by a Pleistocene-Holocene marine sand dunes plateau (up to 200 m a. s. l.). This is represented by prevailing white fine sand (Pleistocene) and prevailing red sand (Holocene), which occurs extensively in the coastal area. The hydrological and geological conditions are investigated by collecting all existing data of aerial and satellite photos, rainfall statistics, morphological/geological/ and hydrogeological maps for acquisition and interpretation. The field geophysical surveys are carried out for the location of groundwater aquifers to site selection, monitoring and operation of groundwater recharge. Hydrochemical and isotopic characterisation of surface water and groundwater in different periods showed that the sand dunes aquifers, with electrical conductivity ranging from 100 to 400 μS/cm, are composed of different water types, characterised by complex mixing processes. The site chosen for the artificial recharge, where 162 days of pumping tests have been carried out, proved that the use of the bank filtration technique has considerably improved the quality of water, which was originally highly contaminated by E-coli bacteria. The well field developed within the present project is now capable of supplying 220 m3/day of good water quality to the HongPhong community, BacBinh district, which were recurrently affected by severe droughts.
Go to article

Bibliography

[1] P. Bono, R. Gonfiantini, M. Alessio, C. Fiori, L. D’Amelio, Stable isotope (δ18O, δ2H) and Tritium in precipitation: Results and comparison with groundwater perched aquifers in Central Italy. TEC-DOC (IAEA) (2004).
[2] P.J. Dillon, M. Miller, H. Fallowfield, J. Hutson, The potential of riverbank filtration for drinking water supplies in relation to microsystem removal in brackish aquifers. J. Hydrol. 266 (3-4), 209-221 (2002).
[3] P.J. Dillon (Ed.), Management of Aquifer Recharge for Sustainability, A.A. Balkema Publishers, Australia, (2002).
[4] P.J. Dillon, Future Management of Aquifer Recharge, UNESCO-VIETNAM Workshop on Augmenting groundwater resources by Artificial Recharge in South East Asia, HCM city, Dec. 15-17-2004 (2005).
[5] P.J. Dillon, S. Toze, D. Page, J. Vanderzalm, E. Bekele, J. Sidhu, S. Rinck-Pfeiffer, Managed aquifer recharge: rediscovering nature as a leading edge technology. Water Sci. Technol. 62 (10), 2338-2345 (2010). DOI: https://doi.org/10.2166/wst.2010.444
[6] I . Gale, I. Neumann, R. Calow, M. Moench, The effectiveness of Artificial Recharge of Groundwater: a review. Phase 1 Final report R/02/108N, British Geological Survey, (2002).
[7] I . Gale, D.M.J. Macdonald, I. Neumann, R. Calow, Augmenting Groundwater Resources by Artificial Recharge. AGRAR, Phase 2 Inception report, British Geological Survey, (2003).
[8] N.V. Giang, M. Bano, T.D. Nam, Groundwater investigation on sand dunes area in southern part of Vietnam by Magnetic Resonance Sounding. Acta Geophysica 60 (1), 157-172 (2012). DOI: https://doi.org/10.2478/s11600-010-0040-2
[9] N.V. Giang, The role of geophysical techniques for hydrogeological and environmental study in the sand-dunes area in Vietnam. Poster presentation at the IUGG XXIV General Assembly 2-13 July, Perugia, Italy (2007).
[10] N.V. Giang, N. Hida, Study of Hydrological Characteristics and Hydrogeological Conditions for Management of Aquifer Recharge in NW Hanoi Vietnam. Proc. of International Symposium on Efficient Groundwater resources Management, Feb.16-21, Bangkok, Thailand (2009).
[11] N.V. Giang, N.B. Duan, L.C. Khiem, L.N. Thanh, N.Q. Dung, The interpretation of geophysical data for studying hydrogeological characteristics of BacBinh, BinhThuan area. Vietnam J. Earth Sci. 68B (4), 410-422, (2016), (in Vietnamese-Abstract in English).
[12] N.V. Giang, N.B. Duan, L.N. Thanh, N. Hida, Geophysical techniques to aquifer locating and monitoring for industrial zones in North Hanoi, Vietnam. Acta Geophysica 61 (6), 1573-1597 (2013). DOI: https://doi.org/10.2478/s11600-013-0147-8.
[13] N.V. Giang, L.N. Thanh, V.Q. Hiep, N. Hida, Hydrological and hydrogeological characterization of groundwater and river water in the North Hanoi industrial area, Vietnam. Environmental Earth Sciences 71 (11), 4915-4924 (2014). DOI: https://doi.org/10.1007/s12665-014.3086-z.
[14] N.V. Giang, L.B. Luu, T.D. Nam, Determination of water bearing layers on dry sand dune of the Bac Binh-Binh Thuan area by electromagnetic data. Vietnam J. Earth Sci. 30 (4), 472-480 (2008), (in Vietnamese-Abstract in English).
[15] N. Hida, N.V. Giang, Artificial recharge of groundwater in the Rokugo alluvial fan: Experiment of April and September. Proceedings of Japanese Association of Hydrological Sciences (JAHS-21) at Matsumoto, Japan, Oct. 28-29, (2006).
[16] N. Hida, N.V. Giang, M. Kagabu, Experience of Managed Aquifer Recharge Using Basin Method in the Rokugo Alluvial Fan, Northern Japan. Proc. of International Symposium on Efficient Groundwater resources Management, Feb. 16-21, Bangkok, Thailand (2009).
Go to article

Authors and Affiliations

Nguyen Van Giang
1
ORCID: ORCID

  1. BinhDuong University, Faculty of Architecture and Construction, 504 Binhduong Ave., Thu-Dau Mot city, BinhDuong province

This page uses 'cookies'. Learn more