Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 44
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on the thermal behavior of the starch-based binder (Albertine F/1 by Hüttenes-Albertus) used in foundry technology of molding sand. The analysis of the course of decomposition of the starch material under controlled heating in the temperature range of 25-1100°C was conducted. Thermal analysis methods (TG-DTG-DSC), pyrolysis gas chromatography coupled with mass spectrometry (Py-GC/MS) and diffuse reflectance spectroscopy (DRIFT) were used. The application of various methods of thermal analysis and spectroscopic methods allows to verify the binder decomposition process in relation to conditions in the form in both inert and oxidizing atmosphere. It was confirmed that the binder decomposition is a complex multistage process. The identification of CO2 formation at set temperature range indicated the progressive process of decomposition. A qualitative evaluation of pyrolysis products was carried out and the course of structural changes occurring in the presence of oxygen was determined based on thermo-analytical investigations the temperature of the beginning of binder degradation in set condition was determined. It was noticed that, significant intensification of Albertine F/1 sample decomposition with formation of more degradation products took place at temperatures above 550ºC. Aromatic hydrocarbons were identified at 1100ºC.

Go to article

Authors and Affiliations

K. Kaczmarska
S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
S. Cukrowicz
Download PDF Download RIS Download Bibtex

Abstract

The investigation results of the influence of the reclaim additions on the properties of moulding sands with the GEOPOL geopolymer

binder developed by the SAND TEAM Company were presented. Two brands of hardeners were applied in the tested compositions, the

first one was developed by the SAND TEAM Company, marked SA72 and the new hardener offered by the KRATOS Company, marked

KR72. The main purpose of investigations was to determine the influence of reclaim fractions and the applied hardener on the basic

moulding sands properties, such as: bending and tensile strength, permeability and grindability. The unfavourable influence of the reclaim

additions into moulding sands on the tested properties as well as an increased hardening rate, were found. Moulding sands, in which the

hardener KR72 of the KRATOS Company was used, were less sensitive to the reclaim additions.

Go to article

Authors and Affiliations

M. Holtzer
A. Bobrowski
D. Drożyński
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the complete technology of inorganic geopolymer binder system GEOPOL® which is a result of long term research and development. The objective of this paper is to provide a theoretical and practical overview of the GEOPOL® binder system and introduce possible ways of moulds and cores production in foundries. GEOPOL® is a unique inorganic binder system, which is needed and welcomed in terms of the environment, the work environment, and the sustainable resources. The GEOPOL® technology is currently used in the foundries for three basic production processes/technologies: (1) for self-hardening moulding mixtures, (2) sand mixtures hardened by gaseous carbon dioxide and (3) the hot box technology with hot air hardening. The GEOPOL® technology not only solves the binder system and the ways of hardening, but also deals with the entire foundry production process. Low emissions produced during mixing of sand, moulding, handling, and pouring bring a relatively significant improvement of work conditions in foundries (no VOCs). A high percentage of the reclaim sand can be used again for the preparation of the moulding mixture.

Go to article

Authors and Affiliations

M. Vykoukal
A. Burian
M. Přerovská
Download PDF Download RIS Download Bibtex

Abstract

Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.
Go to article

Authors and Affiliations

A. Grabarczyk
1
ORCID: ORCID
K. Major-Gabryś
1
ORCID: ORCID
J. Jakubski
1
ORCID: ORCID
St.M. Dobosz
1
ORCID: ORCID
D. Bolibruchová
2
ORCID: ORCID
R. Pastirčák
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. University of Zilina, Žilinská Univerzita v Žiline, Faculty of Mechanical Engineering, Žilina, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

It was found that the addition of carbon fibers (CFs) does not affect the crosslinking process in the microwave radiation (800 W, 2.45

GHz) of the BioCo2 binder, which is a water solution of poly(acrylic acid) and dextrin (PAA/D). It has influence on BioCo2 thermal

properties. The CFs addition improves the thermostability of a binder and leads to the reduction of gas products quantity generated in the

temperature range of 300-1100°C (TG-DTG, Py-GC/MS). Moreover, it causes the emission of harmful decomposition products such as

benzene, toluene, xylene and styrene to be registered in a higher temperatures (above 700°C). BioCo2 binder without CFs addition is

characterized by the emission of these substances in the lower temperature range. This indicates the positive effect of carbon fibers

presence on the amount of released harmful products.

The selected technological tests (permeability, friability, bending strength, tensile strength) have shown that the moulding sand with the

0.3 parts by weight carbon fibers addition displays the worst properties. The addition of 0.1 parts by weight of CFs is sufficient to obtain a

beneficial effect on the analyzed moulding sands properties. The reduction of harmful substances at the higher temperatures can also be

observed.

Go to article

Authors and Affiliations

S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
D. Drożyński
K. Kaczmarska
S. Cukrowicz
B. Gawluk
Download PDF Download RIS Download Bibtex

Abstract

The article deals with the gas development of the geopolymer binder system hardened by heat and provides the comparison with organic binder systems. The GEOPOL® W technology is completely inorganic binder system, based on water. This fact allow that the gas generated during pouring is based on water vapour only. No dangerous emissions, fumes or unpleasant odours are developed. The calculated amount of water vapour generated from GEOPOL® W sand mixture is 1.9 cm3/g. The measured volume of gas for GEOPOL® W is 4.3 cm3/g. The measurement of gas evolution proves that the inorganic binder system GEOPOL® W generates very low volume of gas (water vapour) in comparison with PUR cold box amine and Croning. The amount of gas is several times lower than PUR cold box amine (3.7x) and Croning (4.2x). The experiment results are consistent with the literature sources. The difference between the calculated and the measured gas volume is justified by the reverse moisture absorption from the air after dehydration during storing and preparing the sand samples. Minimal generated volumes of gas/water vapour brings, mainly as was stated no dangerous emissions, also the following advantages: minimal risk of bubble defects creation, the good castings without defects, reduced costs for exhaust air treatment, no condensates on dies, reduced costs for cleaning.

Go to article

Authors and Affiliations

M. Vykoukal
A. Burian
M. Přerovská
T. Bajer
J. Beňo
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of preliminary examinations on possibility of determining binder content in traditional moulding sands with the microwave method. The presented measurements were carried-out using a special stand, the so-called slot line. Binder content in thesandmix was determined by measurements of absorption damping Ad and insertion losses IL of electromagnetic wave. One of main advantages of the suggested new method of binder content measurement is short measuring time.
Go to article

Authors and Affiliations

D. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The influence of the refractory coating which is a mixture of silica flour and kaolin on the surface roughness of the plate castings produced

using evaporative patterns had been considered in this work. The kaolin was used as a binder and ratio method was employed to form basis

for the factorial design of experiment which led to nine runs of experiments. Methyl alcohol at 99% concentration was used as the carrier

for the transfer of the coating to the surface of the patterns. Pouring temperature was observed as a process parameter alongside the mix

ratios of the coating. Attempts were made to characterize the refractory coating by using two methods; differential thermal analysis (DTA)

and X-ray diffraction. Attempt was also made to characterize the casting material. Gating system design was done for the plate casting to

determine the correct proportions of the gating parameters in order to construct the gating system properly to avoid turbulence during

pouring of liquid metal. A digital profilometer was used to take the measurements of the surface roughness. It was observed that the mix

ratio 90% silica flour-10% kaolin produced the lowest value of the surface roughness of the plate castings and had the lowest material loss

in the DTA test. The pouring temperature of 650o

C produced best casting.

Go to article

Authors and Affiliations

B.V. Omidiji
R.H. Khan
M.S. Abolarin
Download PDF Download RIS Download Bibtex

Abstract

The possibilities of using an inorganic phosphate binder for the ablation casting technology are discussed in this paper. This kind of binder was selected for the process due to its inorganic character and water-solubility. Test castings were made in the sand mixture containing this binder. Each time during the pouring liquid alloy into the molds and solidification process of castings, the temperature in the mold was examined. Then the properties of the obtained castings were compared to the properties of the castings solidifying at ambient temperature in similar sand and metal molds. Post-process materials were also examined - quartz matrix and water. It has been demonstrated that ablation casting technology promotes refining of the microstructure, and thus upgrades the mechanical properties of castings (Rm was raised about approx. 20%). Properties of these castings are comparable to the castings poured in metal moulds. However, the post-process water does not meet the requirements of ecology, which significantly reduces the possibility of its cheap disposal.
Go to article

Bibliography


[1] Puzio, S., Kamińska, J., Angrecki, M. & Major-Gabryś, K. (2020). The Influence of Inorganic Binder Type on Properties of Self-Hardening Moulding Sands Intended for the Ablation Casting Process. Journal of Applied Materials Engineering. 60(4), 99-108.
[2] United States Patent No. US 7,159,642 B2.
[3] Dudek, P., Fajkiel, A., Reguła, T. & Bochenek, J. (2014). Research on the ablation casting technology of aluminum alloys. Prace Instytutu Odlewnictwa, LIV(2). (in Polish).
[4] Ananthanarayanan, L., Samuel, F. & Gruzelski, J. (1992). Thermal analysis studies of the effect of cooling rate on the microstructure of 319 aluminium alloy. AFS Trans., 100, 383-391.
[5] Thompson, S., Cockcroft, S. & Wells, M. (2004). Advanced high metals casting development solidification of aluminium alloy A356. Materials Science and Technology, 20, 194-200.
[6] Jordon, L.W.J.B. (2011). Monotonic and cyclic characterization of five different casting process on a common magnesium alloy. Inte Natl, Manuf. Sci. Eng. Conf. MSE. Proceeding ASME.
[7] Jorstad, J. & Rasmussen, W. (1997). Aluminium science and technology. American Foundry Society. (368), 204-205.
[8] Weiss, D., Grassi, J., Schultz, B. & Rohagti, P. (2011). Ablation of hybrid metal matrix composites. Transactions of American Foundry Society. (119), 35-42.
[9] Taghipourian, M., Mohammadalihab, M., Boutorabic, S. & Mirdamadic, S. (2016). The effect of waterjet beginning time on the microstructure and mechanical properties of A356 aluminium alloy during the ablation casting process. Journal of Materials Processing Technology. 238, 89-95. DOI: https://doi.org/10.1016/j.jmatprotec.2016.05.004
[10] Rooy, E., Van Linden, J. (2015). ASM Metals Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. 2, 3330-3345.
[11] Bohlooli, V., Shabani Mahalli, M. & Boutorabi, S. (2013). Effect of ablation casting on microstructure and casting properties of A356 aluminium casting alloy. Acta Metallurgica Sininca (English letters). 26(1), 85-91.
[12] Grassi, J., Campbell, J. (2010). Ablation casting. A Technical paper, pp. 1-9.
[13] Jordon, L. (2011). Characterization of five different casting process on a common magnesium alloy. Inte Natl, Manuf. Sci. Eng. Conf. MSEC. Proceeding ASME.
[14] Wang, L., Lett, R. (2011). Microstructure characterization of magnesium control ARM castings. Shape Casting, pp. 215-222.
[15] Yadav , S., Gupta, N. (2017). Ablation casting process – an emerging process for non ferrous alloys. International Journal of Engineering, Technology, Science and Research. 4(4).
[16] Acura. (2015). Ablation Casting. Retrieved from: https://www.acura.com/performance/modals/ablation-casting
[17] Honda. (2015). New technical details next generation nsx revealed at SAE 2015 World Congress. Retrieved from: https://honda.did.pl/pl/samochody/nasza-firma/aktualnosci/450-nowe-szczegoly-techniczne-dot-kolejnej-generacji-modelu-nsx-ujawnione-na-sae-2015-world-congr.html
[18] Technology, F.M. (2015). Ablation-cast parts debut on new acura NSX. Retrieved from: https://www.foundrymag.com/meltpour/ablation-cast-parts-debut-new-acura-nsx
[19] Holtzer, M. (2002). Development directions of molding and core sand with inorganic binders in terms of reducing the negative impact on the environment. Archives of Foundry. 2(3), 50-56. (in Polish).
[20] Major-Gabryś K. (2016). Environmentally friendly foundry molding and core sand. Kraków: Archives of Foundry Engineering. (in Polish)
Go to article

Authors and Affiliations

S. Puzio
1
ORCID: ORCID
J. Kamińska
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Angrecki
1
ORCID: ORCID

  1. ŁUKASIEWICZ Research Network - Foundry Research Institute, Zakopianska 73, 30-418 Cracow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Mickiewicza 30, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The manuscript presents the research results concerning the properties of concrete with non-clinker, low-emission binder composed of by-products from metallurgy and power industry: ground granulated blast furnace slag and fly ash from circular fluidized-bed combustion of brown coal. The binder was added in five proportions. The consistency and air content of the concrete mix were measured, as well as the temperature of the concrete mix during hardening. The compressive strength of the hardened concrete was investigated in three periods of samples’ curing: after 28, 90 and 360 days. Also the penetration depth of water under pressure and freeze and thaw resistance of concrete samples were investigated. The results confirm the possibility of application of slag-CFBC fly ash binder for mass concrete due to low temperature during hardening. The obtained results of the compressive strength and penetration depth of water under pressure reveal the influence of changing the proportion of the binder ingredients, as well as the sample damage during testing the freeze/thaw resistance. The CFBC fly ash-slag binder can be used for mass concrete, hydrotechnical concretes in particular, but excluding the zones exposed to frost.

Go to article

Authors and Affiliations

Agnieszka Machowska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Fly-ash is a form of production waste produced as a result of the burning of coal for energy production. Millions of tonnes of this waste are produced worldwide every year; hence it is extremely important to dispose of it in a useful way, including through treating the initial raw material to obtain a material of higher quality. The aim of the present work is to determine the suitability of processed fly-ash from lignite for reinforcing (stabilizing) soils used in the building of road foundations and embankments. The results provide a method of recycling this waste while at the same time obtaining new materials and technologies for use in road building. This is an important issue both environmentally and in terms of the positive effect that processed fly-ash can have on the stability of road structures.

This article presents the results of experiments carried out using fly-ash produced from lignite at the P¹tnów Power Plant. This ash was first modified (activated) using a Wapeco magnetic activator, and then used to produce hydraulic binders (with the addition of cement) and soil-binder mixtures. These mixtures were made using natural soils from seven different deposits in the Lubuskie region (western Poland). They were stabilized using two hydraulic binders (strength ratings 3 MPa and 9 MPa) added in different amounts (6% and 8% relative to the mass of the soil). During the experiment, a determination was made of the increase in the strength of the analysed samples (after 14, 28, and 42 days) and the increase in the bearing ratio (immediately after consolidation and after 7 days).

Interpretation of the results of the experiment made it possible to assess the dynamics of the increase in compression strength and load-bearing capacity of various soils stabilized with hydraulic binders produced from lignite ash, and to indicate possibilities for the use of these materials.

The analysis showed that it is possible to use these binders for the stabilisation of soils, enabling soils formerly considered to have weak load-bearing capacity (clayey sand; clayey, sandy gravel; clays) to be classified as fully usable in road construction.

Go to article

Authors and Affiliations

Urszula Kołodziejczyk
Michał Ćwiąkała
Aleksander Widuch
Download PDF Download RIS Download Bibtex

Abstract

Each year, mine and mill operations generate enormousamounts of two waste types – fine-grained tailings andcoarse-grained waste rocks. Fine-grained tailings are either discharged in slurry form to surface tailings dams ordelivered in cementitious form to underground mine stopes as backfilling, while coarse-grained rocks are typicallystored by depositing as a dry material in large dumps. The engineering design of surface tailings dams orunderground mine stopes is often controlled by the high compressibility and low shear strength characteristics offine-grained tailings. Cemented paste backfill CPB indicating saturated, fine-grained backfills can undergo majorconsolidation settlement during early curing stages. Thus, a better understanding of the rate and magnitude of bothdifferential and total settlement of CPB cured under stressis essential for a proper backfill geotechnical design. Theconsolidation parameters of CPB can be determined from an improved lab setup called CUAPS (curing underapplied pressure system). This setup is capable of simulating the CPB placement and curing conditions, andmeasuring the consolidation parameters of CPB cured under effective stresses ranging between 0.5 and 400 kPa.In this study, a series of one-dimensional consolidation tests were conducted on CPB samples allowing forexamination of the effects of binder type and rate as well as curing time on the compression properties (e.g.,coefficient of consolidationcv, compression indexCc, and recompression indexCr) and the final geotechnicalindex properties (e.g., void ratioef, water contentwf, and degree of saturationSf). Results showed that as the bindercontent increases, the initial resistance to consolidation increases. Thecvvalue decreases over the course of timedue to evolution of the CPB microstructure generated by the hydration process.

Go to article

Authors and Affiliations

Erol Yilmaz
Tikou Belem
Mostafa Benzaazoua
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the issue of using moulding sands with a new two-component binder: furfuryl-resole resin – PCL polycaprolactone for the production of ductile iron heavy castings. The previous laboratory studies showed the possibility of using biodegradable materials as binders or parts of binders’ compositions for foundry moulding and core sands. The research proved that addition of new biodegradable PCL in the amount of 5% to the furfuryl-resole resin does not cause significant changes in moulding sand’s properties. The article presents research related to the production of ductile iron castings with the use of moulds with a modified composition, i.e. sands with furfuryl resole resin with and without PCL. Mechanical properties and microstructure of the casting surface layer at the metal/ mould interface are presented. The obtained test results indicate that the use of a biodegradable additive for making foundry moulds from moulding sand with a two-component binder does not deteriorate the properties of ductile iron castings.
Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Warmuzek
1
ORCID: ORCID
M. Brůna
3
ORCID: ORCID

  1. Lukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  3. University of Žilina, Department of Technological Engineering, Faculty of Mechanical Engineering, Univerzitná 1, 010 26, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

Due to the observed increase in the amount of waste in landfills, there has been an increase in the demand for products made of biomaterials and the composition of biomaterials with petroleum-derived materials. The problem of waste disposal/management also applies to waste from the casting production process with the use of disposable casting moulds made with the use of organic binders (resins), as well as residues from the process of regeneration of moulding sands. A perspective solution is to add a biodegradable component to the moulding/core sand. The authors proposed the use of polycaprolactone (PCL), a polymer from the group of aliphatic polyesters, as an additive to a casting resin commonly used in practice. As part of this study, the effect of PCL addition on the (bio) degradation of dust obtained after the process of mechanical regeneration of moulding sands with organic binders was determined. The (bio) degradation process was studied in the environment reflecting the actual environmental conditions. As part of the article, dust samples before and after the duration of the (bio) degradation process were tested for weight loss by thermogravimetry (TG) and for losses on ignition (LOI).
Go to article

Bibliography

[1] Bastian, K.C., Alleman, J.E. (1996). Environmental bioassay evaluation of foundry waste residuals. Joint Transportation Research Program Technical Report Series, Purdue University, Purdue e-Pubs.
[2] Brenner, V. (2003). Biodegradace persistentních xenobiotik. Biodegradace. VI, 2003, 45-47.
[3] Sobków, D., Barton, J., Czaja, K., Sudoł, M. & Mazoń, B. (2014). Research on the resistance of materials to environmental factors. CHEMIK. 68(4), 347–354. (in Polish).
[4] Stachurek I. (2010). Biomedical systems of polyethylene oxide biodegradable in the aquatic environment. PhD thesis, Politechnika Krakowska. (in Polish).
[5] Eastman, J. (2000). Protein-based binder update: performance put to the test. Modern Casting. 90, 32-34.
[6] Kramářová, D., Brandštetr, J., Rusín, K. & Henzlová, P. (2003). Biogenic polymeric materials as binders for foundry molds and cores. Slévárenství. 60(2-3), 71-73. (in Czech).
[7] Grabowska, B., Holtzer, M., Dańko, R., Górny, M., Bobrowski, A. & Olejnik, E. (2013). New bioco binders containing biopolymers for foundry industry. Metalurgija. 52(1), 47-50.
[8] Grabowska, B., Szucki, M., Suchy, J.Sz., Eichholz, S., Hodor, K. (2013). Thermal degradation behavior of cellulose-based material for gating systems in iron casting production. Polimery. 58(1), 39-44.
[9] Major-Gabryś, K. (2016). Environmentally Friendly Foundry Moulding and Core Sands. Katowice-Gliwice, Archives of Foundry Engineering, ISBN 978-83-63605-24-7 (in Polish)
[10] Major-Gabryś, K. (2019). Environmentally Friendly Foundry Molding and Core Sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911.
[11] Holtzer, M. (2001). Management of waste and by-products in foundries. Kraków: University Scientific and Didactic Publishers, AGH, Poland. (in Polish).
[12] Skrzyński, M., Dańko, R. & Czapla, P. (2014). Regeneration of used moulding sand with furfuryl resin on a laboratory stand. Archives of Foundry Engineering. 14(spec.4), 111-114. (in Polish).
[13] Dańko, R., Łucarz, M. & Dańko, J. (2014). Mechanical and mechanical-thermal regeneration of the used core sand from the cold-box process. Archives of Foundry Engineering. 14(spec.4), 21-24. (in Polish).
[14] Rui, T., Liu, J. (2010). Study of modified furan resin binder system for large steel castings. In Proceedings of 69th World Foundry Congress, 16 - 20 October 2010. Hangzhou, China, World Foundry Organization (pp. 996 – 999).
[15] Dańko, R., Holtzer, M., Dańko, J. (2015). Characteristics of dust from mechanical reclamation of moulding sand with furan cold-setting resins – impact on environment. In Proceedings of the 2015 WFO International Forum on Moulding Materials and Casting Technologies, 25 – 28 September 2015. Changsha, China. WFO Moulding Materials Commission, Foundry Institution of Chinese Mechanical Engineering Society, Productivity Center of Foundry Industry of China (38-46).
[16] Iwamoto, A. & Tokiwa, Y. (1994). Enzymatic degradation of plastics containing polycaprolactone. Polymer Degradation and Stability. 45(2), 205-213.
[17] Eastmond, G.C. (2000). Poly(ε-caprolactone) blends. Advances in Polymer Science. 149, 59-222.
[18] Gutowska, A., Michniewicz, M., Ciechańska, D. & Szalczyńska, M. (2013). Methods of testing the biodegradability of biomass materials. CHEMIK. 67(10), 945-954. (in Polish).
[19] Major-Gabryś, K., Hosadyna-Kondracka, M., Skrzyński, M., Pastirčák, R. (2020). The quality of reclaim from moulding sand with furfuryl resin and PCL additive. The abstract paper at XXVI international conference of Polish, Czech and Slovak founders: 7-9.09.2020 r. Baranów Sandomierski, Poland.
[20] Major-Gabryś, K., Hosadyna-Kondracka, M. & Stachurek, I. (2020). Determination of mass loss in samples of post-regeneration dust from moulding sands with and without PCL subjected to biodegradation processes in a water environment. Journal of Applied Materials Engineering. 60(4), 121-129.
Go to article

Authors and Affiliations

K. Major-Gabryś
1
ORCID: ORCID
I. Stachurek
2
ORCID: ORCID
M. Hosadyna-Kondracka
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Mickiewicza 30, 30-059 Cracow, Poland
  2. ŁUKASIEWICZ Research Network - Foundry Research Institute, Zakopianska 73, 30-418 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

A thermo-insulating moulding sand with a binder made of aluminosilicate microspheres with organic binder was subjected to testing. The aim of the analysis was to determine selected technological properties of the developed compounds. Compressive strength, friability and gas permeability were determined. The binder content was changed within a range of 5÷20 wt% with a 5% step. The applied matrix is characterized by good thermo-insulating properties and a small size of grains, while synthetic organic binder has favourable functional properties, among which the most noteworthy are the extended life and setting time, good rheological properties as well as high resistance to chemical agents. The intended use of the compound is the casting of 3D CRS (Composite Reinforced Skeletons), which are characterized by a well-developed heat transfer surface area, good absorption of impact energy, low mass and a target thickness of connectors within a range of 1.5÷3 mm. The construction of 3D CRS castings is an original concept developed by the employees of the Department of Foundry Engineering at the Silesian University of Technology.

Go to article

Authors and Affiliations

K. Stec
Marian Cholewa
Ł. Kozakiewicz
Download PDF Download RIS Download Bibtex

Abstract

The research paper presents the results of testing the strength and technological properties of molding sand with gypsum binder, the bonding process proceeded: naturally or conventionally. The tests included mass containing (parts by weight): 78 pbw. Grudzeń-Las quartz sand, 22 pbw. plaster gypsum "Dolina Nidy” and 9 pbw. water. Measurements of compressive strength, shear, tensile and bending as well as permeability and looseness were carried out on standard cylindrical samples kept in the air for 1 - 96 hours or dried at 110 oC for 1 - 8 hours. The results of the analysis were analyzed in connection with the mass structure and construction binding bridges warp grains observed with a scanning microscope (SEM). The influence of drying intensity on the bonding process and related mass properties has been demonstrated, especially from the point of view of the possibility of selection and / or intensification of a specific curing method for use in the production of gypsum binger molds and cores.

Go to article

Authors and Affiliations

K. Granat
P. Paduchowicz
A. Dziedzic
M. Jamka
P. Biały
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of an investigation of the gases emission of moulding sands with an inorganic (geopolymer) binder with a relaxation additive, whose main task is to reduce the final (residual) strength and improves knocking-out properties of moulding sand. The moulding sand without a relaxation additive was the reference point. The research was carried out using in accordance with the procedure developed at the Faculty of Foundry Engineering of AGH - University of Science and Technology, on the patented stand for determining gas emissions. Quantification of BTEX compounds was performed involving gas chromatography method (GC).The study showed that the introduction of relaxation additive has no negative impact on gas emissions - both in terms of the total amount of gases generated, as well as emissions of BTEX compounds. Among the BTEX compounds, only benzene is emitted from the tested moulding sands. Its emission is associated with the introduction a small amount of an organic hardener from the group of esters.

Go to article

Authors and Affiliations

A. Bobrowski
S. Żymankowska-Kumon
K. Kaczmarska
D. Drożyński
B. Grabowska
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the possibilities of using alkali silicate based inorganic binders for automotive industry aluminium castings production. In recent years, inorganic binders are coming back to the foreground and their manufacturers are developing new processes, which are starting to progressively supersede organic binder systems. Paper describes known knowledge about classic alkali silicate binders with focus on hardening processes and on improving their technological properties. Trends from the area of development and the use new alkali silicate based inorganic binders are also shortly described. As part of the experimental work, specific methods of producing samples were developed, with the help of which properties such as disintegration were subsequently evaluated by measuring abrasion and residual strengths. Characteristics such as residual compressive strength or shear strength at different thermal loads were also evaluated. When comparing the laboratory results with the results of de-coring in real conditions, a high degree of correlation was achieved, which makes it possible to determine the optimal recipe/procedure for the production of geometrically complex cores.
Go to article

Bibliography

[1] Jelínek, P. (1996). Foundry molding mixtures Part II, Binder systems of molding mixtures. Ostrava.
[2] Lewandowski, J.L. (1997) Plastics for casting molds. Kraków: WYD AKAPIT.
[3] Bolibruchova, D., Kuris, M., Matejka, M. & Kasinska, J. (2022). Study of the influence of zirconium, titanium and strontium on the properties and microstructure of AlSi7Mg0.3Cu0.5 alloy. Materials. 15(10). 3709, 1-20. DOI: 10.3390/ma15103709.
[4] Köhler, E., Klimesch, C., Bechtle, S. & Stanchev, S. (2010). Cylinder head production with gravity die casting. MTZ Worldwide. 71, 38-41. DOI: 10.1007/BF03227043. https://doi.org/10.1007/BF03227043.
[5] Polzin, H. (2014.) Inorganic Binders for mould and core production in the foundry. (1st. ed.) Berlin: Schiele und Schön.
[6] Antoš, P., Burian, A. (2002). Water glass - production, structure, properties and uses. Silchem
[7] Izdebska-Szanda, I., Palma, A., Angrecki, M. & Żmudzińska, M. (2013). Environmentally friendly mould technology. Archives of Foundry Engineering. 13(3), 37-42. DOI: 10.2478/afe-2013-0055.
[8] Stechman, M., Różycka, D. & Baliński, A. (2003). Modification of aqueous sodium silicate solutions with morphoactive agents. Polish Journal of Chemical Technology. 5(3), 47-50. ISSN (1509-8117).
[9] Jelínek, P. & Škuta, R. (2003). Modified sodium silicates – a new alternative for inorganic foundry binders. Materials Enginering. 10(3), 283.
[10] Mashifana, T. & Sithole, T. (2020). Recovery of silicon dioxide from waste foundry sand and alkaline activation of desilicated foundry sand. Journal of Sustainable Metallurgy. 6, 700-714. DOI: 10.1007/s40831-020-00303-5.
[11] Vasková, I. & Bobok, L. (2002). Some knowledge of the water glass modification by the phosphate compounds. Acta Metallurgica Slovaca. 8(2), 161-167.
[12] Major-Gabryś, K., Dobosz, St.M., Jelínek, P., Jakubski, J. & Beňo, J. (2014). The measurement of high-temperature expansion as the standard of estimation the knock-out properties of moulding sands with hydrated sodium silicate. Archives of Metallurgy and Materials. 59(2), 739-742. DOI: 10.2478/amm-2014-0123.
[13] Obzina, T., Merta, V., Folta, M., Bradáč, J., Beňo, J. Novohradská, N., et al. (2021). Technological and quality aspects of the use of innovative inorganic binders in the production of castings. Metals. 11(11), 1779, 1-13. DOI: 10.3390/met11111779.
[14] Izdebska-Szanda, I., Baliński, A., Angrecki, M. & Palma, A. (2014). The effect of nanostructure modification of the silicate binder on its binding characteristics and functional properties. Archives of Metallurgy and Materials. 59(3), 1033-1036. DOI: 10.2478/amm-2014-0173.
[15] Major-Gabryś, K., Dobosz, St.M., Jakubski, J. (2010). Self-hardened moulding sand with hydrated sodium silicate and liquid ester hardeners. In K. Świątkowski (Eds.), Polish Metallurgy in 2006-2010. (328-335). Krakow: Committee of Metallurgy of the Polish Academy of Science.
[16] Izdebska-Szanda, I. & Baliński, A. (2011). New generation of ecological silicate binders. Procedia Engineering. 10, 887-893. DOI: 10.1016/j.proeng.2011.04.146.
[17] Baliński, A. (2009). About structure of hydrated sodium silicate as a binder of moulding sands. Krakow: Foundry Research Institute.
[18] Izdebska-Szanda, I. (2012). Moulding sand with silicate binder characterized by beneficial technological and ecological properties. M.Sc. dissertation, Foundry Research Institute, Poland.
[19] Izdebska-Szanda, I., Stefański, Z., Pezraski, F. & Szolc, M. (2009). Effect of additives promoting the formation of lustrous carbon on the knocking out properties of foundry sands with new inorganic binders. Archives of Foundry Engineering. 9(1), 17 – 20.
[20] Izdebska-Szanda, I., Szanda, M. & Matuszewski, S. (2011). Technological and ecological studies of moulding sands with new inorganic binders for casting of non-ferrous metal alloys. Archives of Foundry Engineering. 11(1), 43-48. ISSN (1897-3310).
[21] Zaretskiy, L. (2016). Modified silicate binders new developments and applications. International Journal of Metalcasting. 10(1), 88-99. DOI: 10.1007/s40962-015-0005-3.
[22] Josan, A., Pinca‐Bretotean, C. & Ratiuc, S. (2021). Management of the regeneration process of the moulding mixtures in order to reduce the costs of the foundry type industrial enterprises. Materials Today: Proceedings. 45, 4161-4165. DOI: 10.1016/j.matpr.2020.12.034
[23] Davis, J.R. (1998). Metals Handbook. Desk Edition (2nd ed.) Boca Raton:CRC Press.
Go to article

Authors and Affiliations

M. Bruna
1
ORCID: ORCID
I. Vasková
2
ORCID: ORCID
M. Medňanský
1
ORCID: ORCID
P. Delimanová
2
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Department of Technological Engineering, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  2. Institute Of Metallurgy, Faculty of Materials, Metallurgy and Recycling, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Stone mastic asphalt is a gap-graded mix and is usually related to its high bitumen content and its skeleton-like constitution. Although famous for its durability, high resistance to fatigue and rutting, issues such as bleeding and premature aging do occur in the mix since it has a high bitumen content and voids due to its gap-graded structure. In order to encounter these problems from affecting the mix, some instances such as adding additives, rejuvenators and stabilizers into the mixture has been implemented. Nowadays, nano materials are being used in the asphalt mixtures and nano titanium is being introduced as a modifier to the asphalt binder in order to improve the mechanical properties of the stone mastic asphalt mix. The related tests done in order to access the improvement are resilient modulus, dynamic creep, moisture susceptibility and binder drain down. The content of nano titanium used in this research are 1%, 2%, 3%, 4% and 5%. This study is done to assess the mechanical performance of stone mastic asphalt with nano titanium modified binder.
Go to article

Authors and Affiliations

Nur Syafiqah Shamimi Mohd Zali
1
ORCID: ORCID
Khairil Azman Masri
1
ORCID: ORCID
Ramadhansyah Putra Jaya
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
2
ORCID: ORCID
Muzamir Hasan
1
ORCID: ORCID
Mohd Rosli Mohd Hasan
3
ORCID: ORCID
Bartłomiej Jeż
4
ORCID: ORCID
Marcin Nabiałek
4
ORCID: ORCID
Marek Sroka
5
ORCID: ORCID
Paweł Pietrusiewicz
4
ORCID: ORCID

  1. Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
  2. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  3. School of Civil Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
  4. Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 42-201 Czestochowa, Poland
  5. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian 21 University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper provides an overview of selected scientific articles presenting research carried out in recent years on methods for producing autoclaved aerated concrete. Traditional technologies are briefly presented, together with innovative solutions for the production of low-density and ultra-lowdensity materials. In addition to the presentation of the manufacturing methods themselves, the results of research into the properties of the autoclaved aerated concrete obtained and their dependence on the technology used are also presented. A subjective selection and review of articles covering research into the thermal conductivity of concrete, the technological factors influencing them and the ways in which they can be shaped was also carried out. A significant number of the cited articles do not function in the world scientific circulation due to the language barrier (they are mainly in Ukrainian). In the meantime, they contain interesting research results which can inspire further research into the issues discussed concerning the production technology and the thermal and strength properties of autoclaved aerated concrete, with particular emphasis on lightweight and ultra-lightweight concrete.
Go to article

Authors and Affiliations

Yaroslav Yakymechko
1
ORCID: ORCID
Roman Jaskulski
2
ORCID: ORCID
Maciej Banach
2
ORCID: ORCID
Piotr Perłowski
2
ORCID: ORCID

  1. Lviv Polytechnic National University, Institute of Chemistry and Chemical Technologies, Bandera str. 13, Lviv, Ukraine
  2. Warsaw University of Technology, Faculty of Civil Engineering Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland
Download PDF Download RIS Download Bibtex

Abstract

The use of environmentally friendly inorganic binders and new technologies for cores production is widely discussed topic in recent years. This paper contains information about new hot curing process for core making with alumina-silicate based inorganic binders – geopolymers. Main differences between hot cured geopolymers and hot cured alkali silicate based inorganic binders are discussed. The main objective of this research paper was to investigate basic technological properties of geopolymer binder system such as strength, compaction, storage ability and knock-out properties. For this purpose, three mixtures with different powder additives were prepared and tested in laboratory conditions using specific methods. Strength properties evaluation showed sufficient levels as well as knock-out properties measurement, even with additives B and C originally designed for the use with alkali silicate based two component binder systems. Additives B and C were considered compatible with geopolymer binders after casting production trial results. Storage ability of geopolymers seems to be more sensitive than of alkali silicate based binders in the same tested conditions. Mixtures with geopolymer binder showed 20% more decrease of strength compared to alkali silicate binders after 24 hours in conditions of 25 °C and 65 %RH.

Go to article

Authors and Affiliations

I. Vaskova
M. Conev
M. Hrubovčáková
Download PDF Download RIS Download Bibtex

Abstract

The organo-inorganic commercial binder Albertine F/1 (Hüttenes-Albertus) constituting the starch-aluminosilicate mixture was directed to structural studies. The paper presents a detailed structural analysis of the binder before and after exposure to physical curing agents (microwaves, high temperature) based on the results of infrared spectroscopy studies (FTIR). An analysis of structural changes taking place in the binder system with the quartz matrix was also carried out. Based on the course of the obtained IR spectra, it was found that during the exposure on physical agents there are structural changes within the hydroxyl groups in the polymeric starch chains and silanol groups derived from aluminosilicate as well as in the quartz matrix (SiO2). The curing of the molding sand takes place due to the evaporation of the solvent water and the formation of intramolecular and intermolecular cross-linking hydrogen bonds. Type and amount of hydrogen bonds presence in cured molding sand have an impact on selected properties of molding sand. Results indicates that for molding sand with Albertine F/1 during conventional heating a more extensive network of hydrogen bonds is created.
Go to article

Authors and Affiliations

S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
K. Kaczmarska
S. Cukrowicz
Download PDF Download RIS Download Bibtex

Abstract

The effects of silica additive (Poraver) on selected properties of BioCo3 binder in form of an aqueous poly(sodium acrylate) and dextrin (PAANa/D) binder were determined. Based on the results of the thermoanalytical studies (TG-DTG, FTIR, Py-GC/MS), it was found that the silica additive results in the increase of the thermostability of the BioCo3 binder and its contribution does not affect the increase in the level of emissions of organic destruction products. Compounds from group of aromatic hydrocarbons are only generated in the third set temperature range (420-838°C). The addition of silicate into the moulding sand with BioCo3 causes also the formation of a hydrogen bonds network with its share in the microwave radiation field and they are mainly responsible for maintaining the cross-linked structures in the mineral matrix system. As a consequence, the microwave curing process in the presence of Poraver leads to improved strength properties of the moulding sand (���� �� ). The addition of Poraver's silica to moulding sand did not alter the permeability of the moulding sand samples, and consequently reduced their friability. Microstructure investigations (SEM) of microwave-cured samples have confirmed that heterogeneous sand grains are bonded to one another through a binder film (bridges).

Go to article

Authors and Affiliations

S. Cukrowicz
S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
D. Drożyński
K. Kaczmarska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of an investigation of the thermal deformation of moulding sands with an inorganic (geopolymer) binder with a relaxation additive, whose main task is to reduce the final (residual) strength and improves knocking-out properties of moulding sand. The moulding sand without a relaxation additive was the reference point. The research was carried out using the hot-distortion method (DMA apparatus from Multiserw-Morek). The results were combined with linear deformation studies with determination of the linear expansion factor (Netzsch DIL 402C dilatometer). The study showed that the introduction of relaxation additive has a positive effect on the thermal stability of moulding sand by limiting the measured deformation value, in relation to the moulding sand without additive. In addition, a relaxation additive slightly changes the course of the dilatometric curve. Change in the linear dimension of the moulding sand sample with the relaxation additive differs by only 0.05%, in comparison to the moulding sand without additive.

Go to article

Authors and Affiliations

A. Bobrowski
D. Drożyński
J. Jakubski
M. Szumera
K. Kaczmarska
B. Grabowska

This page uses 'cookies'. Learn more