Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

According to a fuel flexibility, fluidized bed boilers are considered as appropriate for biomass combustion as cofiring. But the burning of fuels such as forest and agricultural biomass raises a number of operational problems. Most important of these problems are bed agglomeration and deposition. Deposition appears when biomass contains significant amounts of alkali elements, such as sodium and potassium. The purpose of the work is to select a fuel additive to overcome these operational problems. Investigations were conducted in two stages at a pilot scale 0.1 MWth laboratory circulating fluidized bed reactor. As the fuel, the mixture of biomass contained forest residues, sunflower husks, straw and wood pellets from mixed woods was selected. In the first stage biomass was burnt without any additives, while in the second one the fuel was enriched with some additive. The additive (liquid mixture of chemicals) was added to the fuel in amounts of 1 dm3 per 5-10 Mg of fuel. The following operational parameters were examined: temperature profiles along the height of the circulating fluidised bed column, pressure profiles, emissions. After the tests, the laboratory reactor was inspected inside. Its results enables expression of the following conclusions: there was no agglomeration during fuel additive testing, and the deposition was reduced as well. Moreover, the parts (heating surfaces, separator) of the laboratory reactor were coated with a protective layer. The layer covered microcracks and protected the parts from deposition for a long period after the operation.

Go to article

Authors and Affiliations

Wojciech Nowak
Łukasz Dunajski
Wojciech Kruk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents possibilities for of numerical modelling of biomass combustion in a commercially available boiler. A sample of biomass was tested with respect to its physical and chemical properties. Thermogravimetry studies of biomass were carried out. Computer simulation makes it possible to analyse complex phenomena which are otherwise difficult to observe. The aim of this work was to model biomass combustion to predict the amount of pollutants generated (NOx, CO, SO2) in the exhaust gases coming out from boilers The calculations were made using the CHEMKIN program. Results of calculations were performed taking into account the influence of temperature, pressure and residence time.

Go to article

Authors and Affiliations

Aneta Magdziarz
Małgorzata Wilk
Monika Zajemska
Download PDF Download RIS Download Bibtex

Abstract

The demand for a net reduction of carbon dioxide and restrictions on energy efficiency make thermal conversion of biomass a very attractive alternative for energy production. However, sulphur dioxide emissions are of major environmental concern and may lead to an increased corrosion rate of boilers in the absence of sulfatation reactions. Therefore, the objective of the present study is to evaluate the kinetics of formation of sulphur dioxide during switchgrass combustion. Experimental data that records the combustion process and the emission formation versus time, carried out by the National Renewable Energy Institute in Colorado (US), was used to evaluate the kinetic data.

The combustion of switchgrass is described sufficiently accurate by the Discrete Particle Method (DPM). It predicts all major processes such as heating-up, pyrolysis, combustion of switchgrass by solving the differential conservation equations for mass and energy. The formation reactions of sulphur dioxide are approximated by an Arrhenius-like expression including a pre-exponential factor and an activation energy. Thus, the results predicted by the Discrete Particle Method were compared to measurements and the kinetic parameters were subsequently corrected by the least square method until the deviation between measurements and predictions was minimised. The determined kinetic data yielded good agreement between experimental data and predictions.

Go to article

Authors and Affiliations

Bernhard Peters
Joanna Smuła-Ostaszewska
Download PDF Download RIS Download Bibtex

Abstract

Wood pellets are classified as a solid biomass type. They are one of the most popular bio-heating fuels used in Europe, especially in the small heating sector, where pellets are burned in low-power domestic boilers. The pellets and automatic pellet-fired heating devices gained popularity due to the increasing air pollution (smog) problem and the low emission limiting campaigns associated with it. Wood pellets are formed as a result of small forestry particles mechanical compression (mainly conifers originated) and they are listed among renewable energy sources. The purpose of the presented studies was to compare the quality of wood pellets used for pellet-fired boilers and to identify, qualitatively and quantitatively, impurities marked in the samples obtained from the domestic market. The application of petrographic analyses, applied so far in relation to fossil fuels, is a presented work innovation for wood pellets. The microscopic analyses were performed on both certified (ENplus/DINplus) and uncertified wood pellets available on the market. Unfortunately, the analysis revealed that the quality requirements were not met, because of the unacceptable contamination presence. The unacceptable organic inclusions in the analyzed samples are fossil coals and their derivatives, coke, and polymeric materials of natural origin. Unacceptable inorganic inclusions determined in the analyzed samples were: glass, slag, rust, pieces of metal, stone powder, plastic, and polymeric materials of inorganic origin.

Go to article

Authors and Affiliations

Adam Nocoń
Iwona Jelonek
Marta Jach-Nocoń
Zbigniew Jelonek

This page uses 'cookies'. Learn more